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1 QFT and Symmetries

This section reviews some of the results discussed in course PHYS 5702 Rela-
tivistic Quantum Mechanics. We will put emphasis on the continuous internal
symmetries of theories.
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1.1 Classical field theory

1.1.1 Lagrangian formalism

A classical field is a function of space and time. A spin zero scalar field is
denoted as φ(x), where xµ is a Lorentz vector. The Lagrangian density is a
function of φ and its first derivatives, L(φ(x), ∂µφ(x)). It could also depend on
higher derivatives of φ, but we will not consider.

The Euler-Lagrange equation is derived for φ configurations that minimize
the action

S[φ] =

∫
d4xL(φ(x), ∂µφ(x)) . (1)

With the argument x integrated over, the resulting S is a functional of φ. A
generic variation of φ(x)→ φ(x) + δφ(x) will cause S to change,

δS = S[φ+ δφ]− S[φ] =

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
. (2)

Using δ(∂µφ) = ∂µ(δφ), and integrate by parts, we get

δS =

∫
d4x

[
∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µφ)

)]
δφ(x) +

∫
d4x∂µ

(
∂L

∂(∂µφ)
δφ

)
. (3)

The last term is an integral over total derivative, and can be written as a surface
integral at spacetime infinity. Requiring δS to vanish in the bulk with arbitrary
δφ(x) leads to the equation of motion for field φ(x),

∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µφ)

)
= 0 . (4)

As the simplest example, we consider a free real scalar field theory with
Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 . (5)

Applying the above equation of motion, we get

(2 +m2)φ(x) = 0 , (6)

where 2 = ∂µ∂
µ. This is the Klein-Gordon equation for a free scalar field.

1.1.2 Hamiltonian formalism

In the Hamiltonian formalism, we first introduce the canonical momentum for
the field φ, called π, defined as

π(x) =
δL

δφ̇
, (7)

4



where φ̇ ≡ ∂φ/∂t and L =
∫
d3xL. Next, introduce the Hamiltonian

H[φ, π] =

∫
d3xπ(x)φ̇(x)− L[φ, ∂µφ] . (8)

As shown by its arguments, H is a functional of φ and π. It is straightforward
to show δH/δφ̇ = 0 by using Eq. (7).

The mechanics of the classical field is dictated by the Hamilton’s equations

δH

δφ
= −π̇ , δH

δπ
= φ̇ . (9)

As an example, consider again the free real scalar field theory. The canonical
momentum is π(x) = φ̇(x). In turn, the Hamiltonian takes the form

H =

∫
d3x

1

2

(
π2 +∇φ · ∇φ+m2φ2

)
. (10)

Next, we apply the first Hamilton’s equation, by taking variation of H with
respect to φ but holding π fixed,

δH =

∫
d3x

[
∇φ · ∇(δφ) +m2φδφ

]
=

∫
d3x

[
∇ · ((∇φ)δφ)− (∇2φ)δφ+m2φδφ

]
.

(11)

By dropping the surface integral term at space infinity, we find δH/δφ = (−∇2+
m2)φ. As a result, the first Hamilton’s equation implies (also use π̇ = φ̈)

φ̈−∇2φ+m2φ = (2 +m2)φ = 0 . (12)

This is equivalent to Eq. (6).
For completeness, it is worth mentioning that the second Hamilton’s equa-

tion simply gives π = φ̇, which is not a new information.

1.1.3 Symmetry and conserved current

We focus on internal symmetries of the Lagrangian. They correspond to trans-
formations to the field φ that leaves L invariant, assuming that φ already satisfies
the equation of motion.

Note this is a stronger requirement than having S invariant. More explicitly,
with an infinitesimal variation, φ→ φ+ δφ, we have

δL = L (φ+ δφ, ∂µ(φ+ δφ))− L(φ, ∂µφ)

=

[
∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µφ)

)]
δφ(x) + ∂µ

(
∂L

∂(∂µφ)
δφ

)
.

(13)

Now the first term vanishes because it is proportional to the Euler-Lagrange
equation. For this to be a symmetry transformation that leaves L invariant, we
need

∂µ

(
∂L

∂(∂µφ)
δφ

)
= 0 . (14)
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It is useful to call δφ ≡ εF (φ) by factorizing out the infinitesimal parameter ε.
With this, we can define the current related to the above symmetry transfor-
mation

Jµ =
∂L

∂(∂µφ)
F (φ) . (15)

Eq. (14) tells that Jµ is a conserved current (Nöther’s current)

∂µJ
µ = 0 . (16)

The corresponding conserved charge is

Q =

∫
d3xJ0(x) , (17)

where the integral goes over the whole space volume. It is conserved because
Q̇ =

∫
d3x∇ · ~J =

∮
d~S · ~J . Assuming the field value vanishes quickly at space

infinity (thus ~J also vanishes there), we get Q̇ = 0.
For every symmetry, there is a conserved current. The number of symmetries

is counted by the number of independent infinitesimal parameters you can find.
As a simple example, we consider the theory of a free complex scalar field

Φ(x). The Lagrangian is

L = ∂µΦ(x)∂µΦ(x)∗ −m2Φ(x)Φ(x)∗ . (18)

By treating Φ and Φ∗ as independent degrees of freedom, we can derive the
same Klein-Gordon equation for Φ.

This Lagrangian has a continuous internal symmetry. It is invariant under

Φ→ Φeiε , Φ∗ → Φ∗e−iε . (19)

The corresponding infinitesimal transformation is δΦ = iεΦ, δΦ∗ = −iεΦ∗.
Applying Eq. (15), and again treating Φ,Φ∗ as two independent fields, we obtain
the Nöther’s current

Jµ = −i(Φ∂µΦ∗ − Φ∗∂µΦ) . (20)

It is straightforward to check this current is conserved. You just need to apply
the equations of motion for Φ and Φ∗.

1.2 Quantization of free fields

1.2.1 Real scalar

As already mentioned, the Lagrangian for a free real scalar field takes the form

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 . (21)

A quantized scalar field is an operator which can create or annihilate single
particle state at spacetime position x.

φ(x) =

∫
d3p

(2π)32E~p

(
a~pe
−ip·x + a†~pe

ip·x
)
, (22)
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where E~p =
√
|~p|2 +m2, p · x = E~pt − ~p · ~x, and the creation/annihilation

operators satisfy the commutation relation,[
a~p, a

†
~p′

]
= 2E~p(2π)3δ3(~p− ~p′) . (23)

This ensures the desired commutation relation for φ field and its canonical
momentum π = φ̇,

[φ(x), π(y)]x0=y0 = iδ3(~x− ~y) . (24)

1.2.2 Complex scalar

A complex scalar field is can be written as a linear combination of two real
scalar fields with equal mass

Φ(x) =
1√
2

(φ1(x) + iφ2(x)) . (25)

The Lagrangian for Φ is then

L(Φ) = L(φ1) + L(φ2) = ∂µΦ∂µΦ† −m2ΦΦ† . (26)

From now on we use † instead of ∗ for hermitian conjugate because quantum
fields are operators.

Using the expansion Eq. (22), we can write Φ(x) as

Φ(x) =

∫
d3p

(2π)32E~p

(
a~pe
−ip·x + b†~pe

ip·x
)
, (27)

where

a~p =
1√
2

(a1~p + ia2~p) , a†~p =
1√
2

(
a†1~p − ia

†
2~p

)
,

b~p =
1√
2

(a1~p − ia2~p) , b†~p =
1√
2

(
a†1~p + ia†2~p

)
.

(28)

The operators a, a† and b, b† are used to annihilate or create a particle or
the antiparticle, and they satisfies the same commutation relations as Eq. (23),
respectively.

1.2.3 Antiparticle and causality

Causality states that for two points that are space-like separated, two operators
(corresponding to experimental actions) must commutate with each other,[

Ô1(x), Ô2(y)
]

= 0 , if (x− y)2 < 0 . (29)

In QFT, the operators are made of fields. To illustrate the point, we consider
the simplest case where Ô1(x) = Φ(x), Ô2(y) = Φ†(y), and evaluate the matrix
element of their commutator between vacuum states.
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We first act Φ(x) and Φ†(y) on the vacuum ket state |0〉. Using Eq. (27), we
get

Φ(x)|0〉 =

∫
d3p

(2π)32E~p
eip·xb†~p|0〉 =

∫
d3p

(2π)32E~p
eip·x|b, ~p〉 ,

Φ(y)†|0〉 =

∫
d3p

(2π)32E~p
eip·ya†~p|0〉 =

∫
d3p

(2π)32E~p
eip·y|a, ~p〉 .

(30)

Physically, we can interpret them as creating an antiparticle (particle) at space-
time point x (y).

Next, we consider the corresponding bra states

〈0|Φ(y)† =

∫
d3p

(2π)32E~p
e−ip·y〈0|b~p =

∫
d3p

(2π)32E~p
e−ip·y〈b, ~p| ,

〈0|Φ(x) =

∫
d3p

(2π)32E~p
e−ip·x〈0|a~p =

∫
d3p

(2π)32E~p
e−ip·x〈a, ~p| .

(31)

which corresponds to a single antiparticle (particle) state at spacetime point
y (x).

Putting them together, we obtain

〈0|Φ(y)†Φ(x)|0〉 =

∫
d3p

(2π)32E~p
eip·(x−y) ,

〈0|Φ(x)Φ(y)†|0〉 =

∫
d3p

(2π)32E~p
e−ip·(x−y) .

(32)

Diagrammatically, they correspond to an antiparticle (particle) travels from x
to y (y to x), as shown below.

antiparticle particle

x

y

x

y

The matrix element of the commutator is then

〈0|[Φ(x),Φ(y)†]|0〉 =

∫
d3p

(2π)32E~p

(
e−ip·(x−y) − eip·(x−y)

)
. (33)

This is a Lorentz invariant quantity, thus we can evaluate it in any reference
frame and get the same result.

For space-like separated two points, it is always possible to find a reference
frame such that x0 = y0. In this frame, we have

〈0|[Φ(x),Φ(y)†]|0〉 =

∫
d3p

(2π)32E~p

(
ei~p·~r − e−i~p·~r

)
, (34)
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where ~r = ~x − ~y. It is then straightforward to show this equals 0, by defining
~p→ −~p for one of the terms.

The lesson we learn here is in QDT, the propagation of a particle is equiv-
alent to the propagation of its antiparticle in the opposite spacetime direction.
Had we quantized the field Φ without involving the antiparticle operators, such
cancelation would not occur. The presence of antiparticle guarantees causality
to work in QFT. Every particle has an antiparticle, with equal mass.

1.2.4 Dirac fermion

The Lagrangian for a free Dirac fermion field takes the form

L(ψ, ∂µψ, ψ̄, ∂µψ̄) = ψ̄iγµ∂µψ −mψ̄ψ . (35)

Because there is no ∂µψ̄ term, the equation of motion is most conveniently
derived by taking derivative with respect to ψ̄, which leads to

(iγµ∂µ −m)ψ = 0 . (36)

This is the Dirac equation. The field ψ is a four component spinor.
In this note, we will use the following convention for γ matrices,

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi
−σi 0

)
, γ5 =

(
−1 0
0 1

)
, (37)

where 1 is a 2 × 2 unit matrix, and σi are the Pauli matrices. A useful anti-
commutation relation: γ5γ

µ = −γµγ5. In three space dimensions, the γ5 matrix
is block diagonal, which allows us to define the projection operators

PL =
1− γ5

2
=

(
1 0
0 0

)
, PR =

1 + γ5

2
=

(
0 0
0 1

)
. (38)

In the Fourier space, the field operator can be expanded as

ψ(x) =
∑
s

∫
d3p

(2π)32E~p

(
u(~p, s)a~p,se

−ip·x + v(~p, s)b†~p,se
ip·x
)
, (39)

where the index s goes over two discrete spin orientations of the fermion. Here
the particle/antiparticle creation and annihilation operators satisfy the anti-
commutation relation,{

a~p,s, a
†
~p′,s′

}
=
{
b~p,s, b

†
~p′,s′

}
= 2E~p(2π)3δ3(~p− ~p′)δss′ . (40)

Plugging Eq. (39) into the Dirac equation, we get

∑
s

∫
d3p

(2π)32E~p

[
(�p−m)u(~p, s)a~p,se

−ip·x + (�p+m)v(~p, s)b†~p,se
ip·x
]

= 0 . (41)
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For it to hold for any value of x, we get two equations for the spinors u and v

(�p−m)u(~p, s) = 0 , (�p+m)v(~p, s) = 0 . (42)

With the above explicit forms of γ matrices, we can solve for u and v.
Here we work out the u solution explicitly, by first defining

u(~p, s) =

(
ξ
η

)
. (43)

The first equation of Eq. (42) reads(
−m1 E1− ~p · ~σ

E1+ ~p · ~σ −m1

)(
ξ
η

)
= 0 , (44)

or {
−mξ + Eη − ~p · ~ση = 0
Eξ + ~p · ~σξ −mη = 0

(45)

Adding and subtracting the two equations in Eq. (45) lead to{
(E −m)(ξ + η) = ~p · ~σ(ξ − η)
(E +m)(ξ − η) = ~p · ~σ(ξ + η)

(46)

Next, define
ξ + η = 2Aχs , (47)

where A is an overall normalization factor. In general, the two component spinor
χs is a linear combination of two unit vectors(

1
0

)
,

(
0
1

)
, (48)

and satisfies χ†sχs = 1. Using the second equation of Eq. (46), we can find

ξ − η = 2A
~p · ~σ
E +m

χs . (49)

Eqs. (47) and (49) allows us to solve ξ and η, and in turn the four spinor
u(~p, s),

u(~p, s) =

√
E +m

2

(1+ ~p·~σ
E+m

)
χs(

1− ~p·~σ
E+m

)
χs

 . (50)

Similarly, we can also find

v(~p, s) =

√
E +m

2

 (
1+ ~p·~σ

E+m

)
χs

−
(
1− ~p·~σ

E+m

)
χs

 . (51)
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The normalization factor A is found from the condition ū(~p, s)u(~p, s′) =
v̄(~p, s)v(~p, s′) = 2mδss′ . This guarantees the desired anti-commutation relation
between ψ and its canonical momentum π = ψ̄iγ0 = iψ†,{

ψ(x), iψ†(y)
}
x0=y0

= iδ3(~x− ~y) . (52)

It is straightforward to verify two very useful identities∑
s

u(~p, s)ū(~p, s) = �p+m ,∑
s

v(~p, s)v̄(~p, s) = �p−m .
(53)

1.2.5 Helicity eigenstates

Define the helicity operator (here we include a factor of 2 for convenience)

ĥ =
2~p · ~Σ
|~p|

=
1

|~p|

(
~p · ~σ 0

0 ~p · ~σ

)
(54)

The eigenvalues of this matrix is λ = ±1. One can verify that the helicity
operator commutates with the quantum mechanics Hamiltonian. Thus helicity
is a conserved quantity. It is useful to find the corresponding helicity eigenstates
satisfying

ĥu(~p, s) = ±u(~p, s) , ĥv(~p, s) = ±v(~p, s) . (55)

Plugging in the above matrix forms for u and v, we find that helicity eigenstates
require

~p · ~σ
|~p|

χs = ±χs . (56)

This is a simple linear algebra problem. The answers are

χs =

(
cos θ2

sin θ
2e
iφ

)
≡ χ+ , (for λ = +1) ,

χs =

(
sin θ

2e
−iφ

− cos θ2

)
≡ χ− , (for λ = −1) .

(57)

The u, v spinors constructed using χ± are helicity eigenstates. They are the
building blocks of helicity amplitudes in QFT.

An interesting limit is the case of massless or ultra-relativistic fermions,
where m � E ' |~p|. The helicity eigenstate u, v spinors take the following
asymptotic forms,

u(~p,+) =
√

2E

(
χ+

0

)
, u(~p,−) =

√
2E

(
0
χ−

)
,

v(~p,+) =
√

2E

(
χ+

0

)
, v(~p,−) =

√
2E

(
0
−χ−

)
.

(58)

In this limit, they are also eigenstates of the chirality operators PL,R.
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1.2.6 Majorana fermion

A Majorana fermion is a special case which is its own antiparticle. We first
introduce the charge-conjugation transformation to a fermion field,

ψc(x) ≡ Cψ̄(x)T , C = −iγ2γ0 . (59)

ψc(x) is the antiparticle field. It could be slightly simplified and written as
iγ2ψ(x)∗. The use of ∗ is a bit sloppy here. One should keep in mind that it
works as a † when acting on the creation or annihilation operator.

With the explicit form of γ2 defined in Eq. (37), if ψ is written as

ψ =

(
ξ
η

)
, (60)

the corresponding charge conjugation field is then

ψc =

(
0 −iσ2

iσ2 0

)(
ξ∗

η∗

)
=

(
−iσ2η

∗

iσ2ξ
∗

)
, (61)

Now we are ready to quantitatively define that a Majorana fermion (ψ = ψc)
satisfies the condition

η = iσ2ξ
∗ . (62)

We can still expand the Majorana fermion field in the Fourier space using
Eq. (39), but ψ = ψc implies the following relations,

a~p,s = b~p,s , a†~p,s = b†~p,s ,

u(~p, s) = −iγ2v(~p, s)∗ , v(~p, s) = −iγ2u(~p, s)∗ .
(63)

If u takes the forms of helicity eigenstates,

u(~p,±) =

√
E +m

2

(1+ ~p·~σ
E+m

)
χ±(

1− ~p·~σ
E+m

)
χ±

 , (64)

then the corresponding v must be

v(~p,±) =

√
E +m

2

−iσ2

(
1− ~p·~σ∗

E+m

)
χ∗±

iσ2

(
1+ ~p·~σ∗

E+m

)
χ∗±

 = ±
√
E +m

2

(1+ ~p·~σ
E+m

)
χ∓(

1− ~p·~σ
E+m

)
χ∓

 .

(65)
In the second step, we have used the identity σ2~σ

∗ = −~σσ2, and the relation
iσ2χ

∗
± = ±χ∓ (see Eqs. (57)).

A vector current made of Majorana fermion must vanish,

ψ̄γµψ = 0 , if ψ = ψc . (66)

Physically, this means we cannot tell the net particle number, usually defined
as number of particles minus number of antiparticles in the system, because
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we cannot distinguish them. On the other hand, the axial current counterpart
ψ̄γµγ5ψ is nonzero.

The Lagrangian for a Majorana fermion takes the form

L =
1

2

(
ψ̄iγµ∂µψ −mψ̄ψ

)
. (67)

The factor 1
2 has the same origin as the Lagrangian for a real scalar field.

1.2.7 Massive vector boson

A free massive vector boson Aµ is described by the Proca Lagrangian,

L = −1

4
FµνF

µν +
1

2
m2AµA

µ = −1

2
∂µAν∂

µAν +
1

2
∂µAν∂

νAµ +
1

2
m2AµA

µ ,

(68)
where Fµν = ∂µAν − ∂νAµ is the field strength tensor. Here Aµ is a real field.

The Euler-Lagrange equation takes the form

∂L
∂Aµ

= ∂ν

(
∂L

∂∂νAµ

)
, ⇒ (2 +m2)Aµ − ∂µ∂νAν = 0 . (69)

Apply another derivative ∂µ to the above equation, we get

m2∂µAµ = 0 . (70)

Therefore, if m 6= 0, we must have ∂µAµ = 0. This is a constraint. It reduces the
degrees of freedom of Aµ to three, corresponding to three possible polarizations
(see below).

With the above constraint, the equation of motion can be simplified to

(2 +m2)Aµ = 0 . (71)

Quantizing the massive vector field leads to the following form in the Fourier
space,

Aµ(x) =
∑

λ=0,±1

∫
d3p

(2π)32E~p

(
εµ(~p, λ)a~p,λe

−ip·x + ε∗µ(~p, λ)a†~p,λe
ip·x
)
, (72)

where the creating and annihilation operators satisfy the regular commutation
relation [

a~p,λ, a
†
~p′,λ′

]
= 2E~p(2π)3δ3(~p− ~p′)δλλ′ . (73)

There are three types of polarization vectors for a massive vector boson, corre-
sponding to λ = 0,±1. They satisfy

εµ(~p, λ)εµ∗(~p, λ′) = −δλλ′ , pµεµ(~p, λ) = 0 . (74)
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In a special case, where the particle travels along the ẑ axis, pµ = (E, 0, 0, p),
we can write explicit forms of εµ

εµ(~p,±1) =
1√
2

(0, 1,±i, 0) , (transverse modes) ,

εµ(~p, 0) =
1

m
(p, 0, 0, E) , (longitudinal mode) .

(75)

In calculations, we often need to sum over polarizations of a vector boson,
in the form ∑

λ=0,±1

εµ(~p, λ)εν(~p, λ) = −gµν +
pµpν
m2

. (76)

1.2.8 Massless vector boson

In this note, we take a simplified way to discuss the quantization of massless
vector boson, without resorting to path integrals. The trick here is to treat a
vector boson that is massless as one with a tiny but nonzero mass. Physically,
this makes sense because our experiments never tell that the photon is strictly
massless, but can only set more and more stringent upper bound on the photon
mass. Mathematically, this approach does not looks great because the vector
boson mass breaks the apparent gauge invariance (that is what we need massless
vector bosons for, in many cases). Nonetheless, we proceed with the following
argument.

Without loss of generality, we consider the vector boson travels along the ẑ
axis, with pµ = (E, 0, 0, p). The longitudinal polarization vector is εµ(~p, 0) =
(p, 0, 0, E)/m. In the limit m→ 0, we have E → p. As a result, the two vectors
pµ and εµ(~p, 0) are in parallel. Do not worry about the denominator.

In this case, we can remove the longitudinal component perform a transfor-
mation to the vector field Aµ,

Aµ(x)→ Aµ(x) + ∂µω(x) . (77)

In the momentum space, this corresponds to

Ãµ(p)→ Ãµ(p) + pµω̃(p) . (78)

Because pµ ∝ εµ(~p, 0) in the m → 0 limit, we can always remove all the parts
in Aµ that are proportional to εµ(~p, 0).

An important observation here is that we are always allowed to do so because
without a mass term, the Lagrangian

L = −1

4
FµνF

µν , (79)

is invariant under the above transformation, Eq. (77). It means we can always
perform the proper field transformation and work in a “basis” where the vector
boson only has transverse degrees of freedom. It indicates the longitudinal

14



polarization component of a massless vector boson is not physical. In such a
basis, the massless vector field expands as

Aµ(x) =
∑
λ=±1

∫
d3p

(2π)32E~p

(
εµ(~p, λ)a~p,λe

−ip·x + ε∗µ(~p, λ)a†~p,λe
ip·x
)
. (80)

As we learned from classical E&M, the sum over transverse polarizations of
photon field satisfy ∑

λ=0,±1

εi(~p, λ)εj(~p, λ) = δij +
pipj

|~p|2
. (81)

In the notation of four component vectors, it becomes∑
λ=±1

εµ(~p, λ)εν(~p, λ) = −gµν +
pµpν
|~p|2

. (82)

The last term is ugly. Fortunately, we can drop such a term in most calculations
because a massless vector boson must couple to a conserved current. This
corresponds to the Ward identity (see Sec. 2.4.1 for a concrete example). At the
Lagrangian level, the interaction term reads

Lint ∼ AµJµ , (83)

where Jµ satisfies ∂µJ
µ = 0. At quantum level, the vector boson cannot stay

massless if the current is not conserved. When computing amplitude squares,
after the polarization sum, Aµ (or εµ) would turn into a pµ if it contributes
through the second term of Eq. (82). Current conservation implies this contri-
bution is zero. Thus, effectively, we can always work with∑

λ=±1

εµ(~p, λ)εν(~p, λ) = −gµν , (84)

for a massless vector boson.

1.3 Global and gauge symmetries

We focus on internal continuous symmetries.

1.3.1 U(1) global symmetry

A U(1) global symmetry usually refers to a constant phase redefinition of a
field. Take the complex scalar Lagrangian, Eq. (26), as the first example. It is
invariant under the field transformations

Φ(x)→ Φ(x)eiθ , Φ(x)† → Φ(x)†e−iθ , (85)

where θ does not depend on x thus derivatives on the field does not act on θ.
This is clearly true because every term contains a Φ(x) and a Φ(x)†, allowing the
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phase factors to cancel after the above transformations. Such a transformation
thus corresponds to a symmetry of the Lagrangian.

The infinitesimal transformations are Φ→ Φ + iεΦ, Φ† → Φ∗ − iεΦ†. Using
Eq. (15), the conserved current for the symmetry is

Jµ =
∂L

∂(∂µΦ)
iΦ +

∂L
∂(∂µΦ†)

(−iΦ†) = i(Φ∂µΦ† − Φ†∂µΦ) . (86)

Using equation of motion, it is straightforward to show ∂µJ
µ = 0. The corre-

sponding conserved charge is

Q =

∫
d3xJ0(x) = i

∫
d3x(ΦΦ̇† − Φ†Φ̇) . (87)

As the second example, we consider the Dirac fermion Lagrangian, Eq. (35).
It is invariant under the field transformations

ψ(x)→ ψ(x)eiθ , ψ̄(x)→ ψ̄(x)e−iθ ,

ψ(x)→ ψ(x) + iεψ , ψ̄(x)→ ψ̄(x)− iεψ̄ , (infinitesimal).
(88)

The conserved current is

Jµ = iψ̄γµ(iψ) = −ψ̄γµψ . (89)

This is a vector current, which always stays conserved after including quantum
corrections. The conserved charge is

Q = −
∫
d3xψ̄γ0ψ = −

∫
d3xψ†ψ(x) . (90)

ψ†ψ corresponds to a number density. The overall sign is unimportant.

1.3.2 Symmetries of QED

Next, we consider an interacting theory – the QED. The Lagrangian is

L = −1

4
FµνF

µν + ψ̄γµ(i∂µ − eAµ)ψ −mψ̄ψ . (91)

Like before, the fermion part of the theory has a U(1) global symmetry, under
the transformation Eq. (88).

Thanks to the presence of more fields, the theory of QED accommodates a
different type of symmetry, where the transformations act jointly on the fermion
and vector boson fields,

ψ(x)→ ψ(x)e−iω(x) ,

ψ̄(x)→ ψ̄(x)eiω(x) ,

Aµ(x)→ Aµ(x) + ∂µω(x) .

(92)
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Here, the fermion field changes by a phase factor e−iω(x) where ω(x) is spacetime
dependent. It corresponds to a local transformation. It is straightforward to
check that

ψ̄i�∂ψ → ψ̄i�∂ψ + eψ̄γµψ∂µω ,

−eψ̄γµψAµ → −eψ̄γµψAµ − eψ̄γµ∂µω ,
(93)

and the fermion mass term is simply invariant. Adding all the pieces together,
the whole Lagrangian remains invariant. This is a U(1) gauge symmetry.

QED is a gauge theory. The photon is the gauge boson. It couples to a
conserved vector current ψ̄γµψ. e is the gauge coupling. The minus sign shows
up in front of e because the electron has a negative electric charge.

1.3.3 SU(2) and SU(3) groups

Next we discuss symmetries larger than U(1). This usually requires more fields.
We start from the global symmetries, by consider a free theory of two degenerate
fermion fields,

L = ψ̄1i�∂ψ1 −mψ̄1ψ1 + ψ̄2i�∂ψ2 −mψ̄2ψ2

=
(
ψ̄1 ψ̄2

)
i�∂

(
ψ1

ψ2

)
−
(
ψ̄1 ψ̄2

)(m 0
0 m

)(
ψ1

ψ2

)
.

(94)

In the second step we rewrite the Lagrangian using matrices. It is useful to
introduce notations for the fermion doublet and mass matrix

Ψ =

(
ψ1

ψ2

)
, Ψ̄ =

(
ψ̄1 ψ̄2

)
, M =

(
m 0
0 m

)
. (95)

Such a Lagrangian is invariant under the global symmetry transformations

Ψ→ e
i
2 (α0+~α·~σ)Ψ , Ψ̄→ Ψ̄e−

i
2 (α0+~α·~σ) , (96)

where α0,1,2,3 are real parameters. They are not x dependent. In particular,
the mass term is invariant because M is proportional to a 2× 2 unit matrix.

The symmetry supported by parameter α0 corresponds to a common phase
rotation of both ψ1,2 fields, which is a U(1) symmetry.

The symmetries supported by the three parameters ~α correspond to an
SU(2) group. Under the SU(2) rotation, ψ1,2 can transform into each other.
The SU(2) symmetry has three generators, which are related to the Pauli ma-
trix,

T a =
1

2
σa , (a = 1, 2, 3) . (97)

The total global symmetry of the theory is SU(2)× U(1).
We can repeat the above discussion for a theory with three degenerate

fermions. In that case, the total global symmetry would be SU(3) × U(1).
The generators of the SU(3) group are related to the Gell-Mann matrices

T a =
1

2
λa , (a = 1, . . . , 8) , (98)

17



where

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1

2
√

3

1 0 0
0 1 0
0 0 −2

 .

(99)

The above model building procedure can be generalized to N copies of
fermions, where we will have an SU(N) × U(1) global symmetry. An SU(N)
group has N2− 1 generators. All of them are Hermitian matrices. They satisfy
the Lie algebra [

T a, T b
]

= ifabcT c , (100)

where fabc is the antisymmetric group structure constant. For the case of SU(2),
fabc = εabc. In general, the structure constant satisfies the Jacobean identity.

facbf bde + fadbf bec + faebf bcd = 0 . (101)

Beyond SU(2), the anti-commutator of two different generators do not al-
ways vanish, {

T a, T b
}

=
1

N
δab + dabcT c , (102)

where dabc is the symmetric group structure constant and another signature of
the SU(N) group, besides fabc.

For fundamental representation of the SU(N) group, the generators satisfy

Tr(T a) = 0 , Tr(T aT b) =
1

2
δab ,

N2−1∑
a=1

(T a)2 =
N2 − 1

2N
1 ,

N2−1∑
a=1

T aijT
a
kl =

1

2

(
δilδkj −

1

N
δijδkl

)
.

(103)

1.3.4 Gauged non-abelian symmetry

Here, we work in the general case of SU(N) gauge symmetry. Introducing N
degenerate fermions, the Lagrangian is

L = −1

4
F aµνF

aµν + Ψ̄γµ
(
i∂µ + gAaµT

a
)

Ψ−mΨ̄Ψ , (104)
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where Ψ is a column matrix of N fermions, ψi, (i = 1, . . . , N). In the presence
of fermions, this is also called the Yang-Mills theory.

The Yang-Mill Lagrangian is invariant under the joint transformations

Ψ(x)→ eigω
a(x)TaΨ(x) ,

Ψ̄(x)→ Ψ̄(x)e−igω
a(x)Ta ,

Aaµ(x)→ Aaµ(x) + ∂µω
a(x)− gfabcωb(x)Acµ(x) .

(105)

For simplicity, we will just show the above Lagrangian is invariant under in-
finitesimal transformations, in the limit ωa � 1,

e±igω
a(x)Ta ' 1± igωa(x)T a . (106)

First, under the above transformation, the mass terms is invariant up to first
order in ω,

Ψ̄Ψ→ Ψ̄(1− igωa(x)T a)(1 + igωa(x)T a)Ψ = Ψ̄Ψ +O(ω2) . (107)

The fermion kinetic term becomes

Ψ̄i�∂Ψ→ Ψ̄(1− igωa(x)T a)i�∂(1 + igωa(x)T a)Ψ

= Ψ̄i�∂Ψ− gΨ̄γµT aΨ∂µω +O(ω2) ,
(108)

which is not invariant at first order in ω by itself.
We have to resort to the fermion gauge interaction term,

gΨ̄γµAaµT
aΨ→ gΨ̄(1− igωbT b)γµT a(1 + igωcT c)Ψ

(
Aaµ + ∂µω

a − gfabcωbAcµ
)

= gΨ̄γµAaµT
aΨ + ig2Ψγµ[T a, T b]ΨωbAaµ

+ gΨ̄γµT aΨ
(
∂µω

a − gfabcωbAcµ
)

= gΨ̄γµAaµT
aΨ− g2fabcΨγµT cΨωbAaµ

+ gΨ̄γµT aΨ∂µω
a − g2fabcΨ̄γµT aΨωbAcµ

= gΨ̄γµAaµT
aΨ + gΨ̄γµT aΨ∂µω

a +O(ω2) .

(109)

In the last step, a cancelation between two terms occur due to the total anti-
symmetric nature of fabc.

Nicely, the sum of the two terms on the left-hand side of Eqs. (108) and
(109) are invariant up to first order in ω.

The last thing to work out is the gauge kinetic term. We need to specify the
form of F aµν ,

F aµν ≡ ∂µAaν − ∂νAaµ + gfabcAbµA
c
ν . (110)

Under the gauge transformation Eq. (105), we have, up to first order in ω,

δ(∂µA
a
ν − ∂νAaµ) = −gfabc

[
∂µ(ωbAcν)− ∂ν(ωbAcµ)

]
= −gfabcωb(∂µAcν − ∂νAcµ)− gfabc

[
(∂µω

b)Acν)− (∂νω
b)Acµ

]
,

(111)
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and

δ(gfabcAbµA
c
ν) = gfabc

[
(∂µω

b)Acν)− (∂νω
b)Acµ

]
− g2fabcf bdeωdAeµA

c
ν − g2fabcf cfgAbµω

fAgν .
(112)

In the last lines, the first term of Eq. (212) cancels the second term of
Eq. (111). Adding the rest, we get

δF aµν = −gfabcωb(∂µAcν − ∂νAcµ)

− g2fabcf bdeωdAeµA
c
ν − g2fabcf cfgAbµω

fAgν

(use f
abc

= −facb in the first term of second line

(rename indices b→ e, c→ b, f → d, g → c in the last term)

= −gfabcωb(∂µAcν − ∂νAcµ)

+ g2facbf bdeωdAeµA
c
ν − g2faebf bdcωdAeµA

c
ν

(use f
bdc

= −fbcd in the last term), (PS: I hate doing this too..)

= −gfabcωb(∂µAcν − ∂νAcµ)

+ g2(facbf bde + faebf bcd)ωdAeµA
c
ν .

(113)

Finally, for the last line, we use the Jacobean identity Eq. (101) and find

δF aµν = −gfabcωb(∂µAcν − ∂νAcµ)− g2fadbf becωdAeµA
c
ν

(rename indices e→ m, c→ n and then b→ c, d→ b in the last term)

= −gfabcωb(∂µAcν − ∂νAcµ)− g2fabcf cmnωbAmµ A
n
ν

= −gfabcωb
(
∂µA

c
ν − ∂νAcµ + gf cmnAmµ A

n
ν

)
= −gfabcωbF cµν .

(114)

For non-abelian gauge boson, the field strength tensor is not invariant under
the gauge transformation, Eq. (105). However, the square is

δ
(
F aµνF

aµν
)

= (−gfabcωbF cµν)F aµν + F aµν(−gfabcωbF cµν)

= −gfabcωb(F cµνF aµν + F aµνF
cµν) ,

(115)

which vanishes because the indices a and c are antisymmetric due to fabc, but
are symmetric inside the bracket. This proves that the gauge kinetic term is
also gauge invariant.

Thus, the Yang-Mills Lagrangian, Eq. (104), is indeed gauge invariant. We
have shown this with the infinitesimal field transformations, and find this con-
clusion holds up to first order in the infinitesimally small parameter ω.

1.3.5 Vectorlike and chiral gauge theories

With the projection operators PL,R, we can separate a Dirac fermion into left-
and right-handed components,

ψ = PLψ +PRψ = ψL + ψR . (116)
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In the language of ΨL,ΨR, the Yang-Mills Lagrangian Eq. (104) can be
written as

L =− 1

4
F aµνF

aµν + Ψ̄Lγ
µ
(
i∂µ + gAaµT

a
)

ΨL + Ψ̄Rγ
µ
(
i∂µ + gAaµT

a
)

ΨR

−mΨ̄LΨR −mΨRΨL ,

(117)

In this model, under the SU(N) gauge transformation, both ΨL,ΨR transform
the same way as Ψ in Eq (105). A theory that treats left- and right-handed
fermions equally is called vectorlike. In such a theory, Dirac masses for fermions
are allowed.

The opposite to vectorlike are the chiral theories, where left- and right-
handed fermions are in different representations under the gauge group. An
extreme example is having only ΨL charged under the SU(N) but ΨR being
gauge singlet. In this case, the gauge invariant Lagrangian reads (for now let’s
put anomalies aside)

L =− 1

4
F aµνF

aµν + Ψ̄Lγ
µ
(
i∂µ + gAaµT

a
)

ΨL + Ψ̄Rγ
µi∂µΨR , (118)

where the right-hande fermion is a gauge singlet and only has normal derivative.
The fermion mass terms are also forbidden because left and right are not com-
patible anymore. This Lagrangian is invariant under the gauge transformations
similar to Eq (105), but only ΨL transforms and ΨR stays invariant. We can
call the gauge symmetry SU(N)L.

In the Standard Model, we will see that the gauge symmetry for strong
interaction SU(3)c is vectorlike, whereas the symmetries for weak interaction
SU(2)L × U(1)Y are chiral. Nature is diverse.

1.4 Spontaneous symmetry breaking

Symmetries are nice. Breaking them can be more fun, if we do so in an organized
way (not randomly breaking it). In this subsection, we discuss spontaneous
breaking of global and gauge symmetries. Spontaneous symmetry breaking
(SSB) is a phenomenon that occurs in nature.

For simplicity, we work with the U(1) symmetry and derive some important
concepts that can be generalized to the SSB of higher symmetries.

1.4.1 Linear σ Model and Goldstone theorem

First consider the Lagrangian for a complex scalar field with a non-trivial po-
tential,

L = ∂µΦ(x)∂µΦ(x)† − V (|Φ(x)|2) , (119)

where |Φ(x)|2 = Φ(x)Φ(x)†, and the potential takes the following form

V (|Φ(x)|2) = λ|Φ(x)|4 + µ2|Φ(x)|2 . (120)
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Clearly this Lagrangian features a U(1) global symmetry, under which

Φ(x)→ Φ(x)eiθ , Φ(x)† → Φ(x)†e−iθ . (121)

The exact form of the potential will dictate the fate such this symmetry.
First, for the potential to be bounded from below so that the theory has a

well-defined vacuum energy, we always need λ ≥ 0. In the marginal case λ = 0,
we must have µ2 > 0. However, if λ > 0, µ2 can take either sign.

λ > 0, µ2 > 0 correspond to the boring case, where the potential is minimized
with

〈Φ(x)〉 = 0 , (122)

where 〈. . . 〉 means taking the vacuum expectation value (VEV) or vacuum con-
densate of a field. The minimization of the potential must already be done at
classical level, before talking about quantum fluctuations.

On the other hand, if λ > 0, µ2 < 0, the potential is minimized with a
nonzero VEV of the scalar field,

〈|Φ(x)|2〉 =
−µ2

2λ
≡ v2

2
, (123)

where v is a real positive parameter with same dimension as mass. For the VEV
of 〈Φ(x)〉, we have the freedom to choose its phase. In general

〈Φ(x)〉 =
v√
2
eiδ . (124)

The freedom of choosing any value δ corresponds to a circle in the complex plane
of Φ(x). Mathematically, it also corresponds to the coset space of the broken
symmetry 1. Hereafter, we will use the freedom and always choose δ = 0, so
that

〈Φ(x)〉 =
v√
2
. (125)

After making this decision, we find such a VEV is no longer invariant under the
U(1) transformation, indicating the symmetry is broken. Breaking a symmetry
through the VEV of a scalar field is called spontaneous.

It is worth emphasizing the significance of the above minimization of poten-
tial. We are not simply minimizing V as a function of some variable. Instead,
V is a function of Φ(x). The latter is a field that fills the whole spacetime. In
fact, we are talking about the minimizing procedure for every point in the space-
time. In the above example, they have a common preferred vacuum condensate,
Eq. (125). At every point in spacetime, the field value is v/

√
2.

1(This footnote could appear vague to readers other than myself.) It is fun to consider a
case of bigger symmetry breaking, SO(3) → U(1). This is the Georgi-Glashow model. The
group manifold for SO(3) is the surface of a sphere. The group manifold of U(1) is a great
circle that belongs to the surface. The coset space corresponds to choosing the orientation of
a great circle on the surface of a sphere. In field theory, at every ~x, such an orientation (in
group theory space) can be mapped to actually directions in three dimensional space. It leads
to a non-trivial topology, and magnetic monopoles.
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We proceed with the case of λ > 0, µ2 < 0, with SSB. Now we are ready to
discuss the quantum field, which describes excitation around the vacuum of the
system,

Φ(x) = 〈Φ(x)〉+ excitations =
v + S(x) + iG(x)√

2
, (126)

where S(x) and G(x) are excitations along the real and imaginary axis in the
complex plane of Φ, respectively. Both are real scalar and they are quantum
fields. The way we organize the excitations here is called linear realization.
Plugging this expansion back to the Lagrangian, Eq. (119), we get

L =
1

2
∂µS∂

µS+
1

2
∂µG∂

µG−λv2S2− λ
4

(S2 +G2)2−λvS(S2 +G2)+constants .

(127)
The first two terms are regular kinetic terms for the real scalar fields. The
third term is quadratic in fields and corresponds to a mass term for S, with
m2
S = 2λv2. The fourth and fifth terms always involve more than two fields

in each term and correspond to interaction terms. The constant term does not
depend on S or G and corresponds to the vacuum energy.

Interestingly, there is no mass term for G. It is a massless scalar after SSB.
This is not an accident, but serves as an example of the Goldstone theorem.
Spontaneously breaking a global symmetry yields a Goldstone boson.

The Goldstone theorem can be generalized to the breaking of higher symme-
tries. Every broken symmetry leads to a massless Goldstone boson. The number
of broken symmetry generators is equal to the number of resulting Goldstone
bosons.

As another generalization, the Lagrangian Eq. (119) we started with has
an exact U(1) global symmetry. In general, global symmetries are allowed to
be explicitly broken at the Lagrangian level. If we do so by adding a tiny
explicit U(1) symmetry breaking term, such as a µ′2Φ2 + h.c. in the potential,
the resulting G will not be massless, but has a small mass, proportional to µ′.
In that case, G is called a pseudo-Goldstone boson. The QCD axion is a good
example of this.

1.4.2 Nonlinear realization

We can repeat the above discussion by using a different way

Φ =
v + S(x)√

2
eiG(x)/v . (128)

where S(x) and G(x) are excitations along the radial and angular directions,
respectively. The resulting Lagrangian now takes the form

L =
1

2
∂µS∂

µS +
(v + S)2

2
∂µ

[
eiG(x)/v

]
∂µ
[
e−iG(x)/v

]
− V

=
1

2
∂µS∂

µS +
1

2
∂µG∂

µG+

(
S2

2v2
+
S

v

)
∂µG∂

µG− λ

4
(S2 + 2vS)2 .

(129)
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Again, G is the massless Goldstone boson. In this realization, the Goldstone
boson is always derivatively coupled.

Remarkably, the linear and nonlinear theories of Goldstone are equivalent to
each other at low energies, with the same S matrix elements. We will elaborate
on this in Section 1.5.

1.4.3 Hidden symmetry: scalar QED example

Next, we move on to discuss the spontaneous breaking of U(1) gauge symmetry.
The model we consider is called scalar QED,

L = −1

4
FµνF

µν +DµΦ(x) (DµΦ(x))
∗ − V (|Φ(x)|2) , (130)

where the covariant derivative is

Dµ = ∂µ − igqAµ(x) , (131)

where q is the U(1) charge of Φ. Before SSB, the Lagrangian is invariant under
the gauge transformations

Φ(x)→ Φ(x)eigqω(x) , Aµ(x)→ Aµ(x) + ∂µω(x) . (132)

Now if λ > 0, µ2 < 0 in the scalar potential, SSB will occur. The VEV of Φ is
the same as Eq. (125) and is not invariant under the above gauge transformation.
To work out the resulting particle spectrum, it is most convenient to work with
the nonlinear realization Eq. (128). The Lagrangian in terms of S,G,Aµ is

L = −1

4
FµνF

µν +
1

2
∂µS∂

µS +
1

2
g2q2v2

(
1 +

S

v

)2(
Aµ −

∂µG

gqv

)(
Aµ − ∂µG

gqv

)
− λ

4
(S2 + 2vS)2 .

(133)

Here is a remarkable observation. We can completely remove the G field
from the above Lagrangian by redefining the vector field

A′µ(x) = Aµ(x)− 1

gqv
∂µG(x) . (134)

The Lagrangian becomes

L = −1

4
F ′µνF

′µν +
1

2
∂µS∂

µS +
1

2
g2q2v2

(
1 +

S

v

)2

A′µA
′µ − λ

4
(S2 + 2vS)2 ,

(135)

where we used F ′µν = Fµν . This Lagrangian describes a massive real scalar
boson S and a massive vector boson A′µ, and their interactions. The masses are

mA′ = gqv , m2
S = 2λv2 . (136)
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With the SSB of a gauge symmetry, the corresponding gauge boson becomes
massive. This is called the Higgs mechanism.

The choice of vector field redefinition to get rid of G is called the unitary
gauge. The price is to make the gauge boson massive. In the unitary gauge,
there is G field to talk about, it is a would-be Goldstone boson. It would be a
true Goldstone boson if the gauge symmetry was global.

1.5 Soft pion limit in the σ model

We close this section by discussing a fun subject, the low energy limit of the σ
model and the equivalence of linear and nonlinear realizations. The Lagrangian
is

L = ∂µΦ∂µΦ† − λ
(
|Φ|2 − v2/2

)2
. (137)

The scalar potential is the same as that in Eq. (120), up to shift in the vacuum
energy.

1.5.1 Linear σ Model

Define

Φ =
1√
2

(v + S + iG) . (138)

The above Lagrangian can be written in terms of the S and G fields,

L =
1

2
∂µS∂

µS +
1

2
∂µG∂

µG− λv2S2 − λ

4
(S2 +G2)2 − λvS(S2 +G2) . (139)

The mass of the “Higgs” boson S is given by m2
S = 2λv2. The goldstone boson

G is massless.
Consider the very low energy scattering process GG→ GG, with center-of-

mass energy well below mS . The interaction Feynman rules relevant for such a
process are:

There are four Feynman diagrams for the GG→ GG scattering:
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Applying the above Feynman rules, we obtain the scattering amplitude

iM = −6iλ+ (−2iλv)
i

s−m2
S

(−2iλv) + (−2iλv)
i

t−m2
S

(−2iλv)

+ (−2iλv)
i

u−m2
S

(−2iλv) ,

(140)

where s = (p1 +p2)2, t = (p1−p3)2, u = (p2−p3)2 are the Mandelstam variables
for 2→ 2 scattering.

In the low energy scattering limit, s, |t|, |u| are all much smaller than m2
S .

We Taylor expand the above S propagator up to second order [using (ε−x)−1 '
−1/x− ε/x2 − ε2/x3],

iM' −6iλ− 4iλ2v2

[
− 3

m2
S

− s+ t+ u

m4
S

− s2 + t2 + u2

m6
S

]
. (141)

Using m2
S = 2λv2 and s+ t+ u = 0 (note the Goldstone bosons are massless),

we find

iM' i(s2 + t2 + u2)

2λv4
. (142)

1.5.2 Non-linear σ Model

In this case, we define

Φ =
1√
2

(v + S) eiG/v . (143)

The original Lagrangian can be written as

L =
1

2
∂µS∂

µS +
1

2
∂µG∂

µG− λv2S2 +

(
S2

2v2
+
S

v

)
∂µG∂

µG− λ

4
(S2 + 2vS)2 .

(144)
Still, the mass of the radial mode S is m2

S = 2λv2 and the goldstone boson G
remains massless. Here the Goldstone boson is always derivatively coupled in
interactions. And there is no contact (∂G)4 term.

The only Feynman rule relevant for the GG→ GG scattering is

−2i p1.p2/v

G(p2)

G(p1)
S

The corresponding Feynman diagrams are

1

2

3

4

1

2

3

4

1

2

3

4
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The sum of three scattering amplitudes are

iM =
−2ip1 · p2

v

i

s−m2
S

−2ip3 · p4

v
+
−2ip1 · p3

v

i

t−m2
S

−2ip2 · p4

v

+
−2ip1 · p4

v

i

u−m2
S

−2ip2 · p3

v

= − i

v2

[
s2

s−m2
S

+
t2

t−m2
S

+
u2

u−m2
S

]
,

(145)

where we used the relations, s = 2p1 · p2 = 2p3 · p4, t = −p1 · p3 = −p2 · p4,
u = −2p1 · p4 = −2p2 · p3, which are valid for massless Goldstone bosons.

For low energy scattering, we expand the S propagators to zeroth order, and
get

iM' i(s2 + t2 + u2)

v2m2
S

=
i(s2 + t2 + u2)

2λv4
. (146)

Clearly, Eq. (10) and Eq. (6) give the same result. This is an example
showing how the Soft Theorem works. At very low energies, the excitations
along the imaginary axis and in the angular direction asymptot to each other.
As a result, all S-matrix elements involving the goldstone boson are identical.
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2 The Standard Model Lagrangian

All particles in the above table are physical mass eigenstates.

2.1 The Lagrangian

We start from the “weak basis” before electroweak symmetry breaking. The
particles or fields are not in the mass basis yet.

The gauge groups of the Standard Model (SM) are

SU(3)c × SU(2)L × U(1)Y , (147)

that give strong and electroweak interactions.
The SU(3) gauge group has 8 generators, each given by half of a Gell-Mann

matrix. Correspondingly, there are 8 gauge bosons, called gluons, Gαµ , with
α = 1, · · · , 8.

The SU(2)L gauge group has 3 generators, each given by half of a Pauli
matrix. The corresponding gauge bosons are denoted by W a

µ , with a = 1, 2, 3.
The U(1)Y is called the hypercharge gauge group, with one gauge boson Bµ.
For the fermion sector, because the SM is chiral, all fermions are separated

into left-handed and right-handed fields, excepted for neutrinos which are only
left-handed. They organize into fundamental representations or gauge singlet
under the above gauge groups.

We introduce some convenions for indices:

• Lorentz indices are µ, ν, ρ, σ.

• Color indices for gluons are α, β, γ · · · = 1, · · · , 8.

• Color indices for quarks are i, j, k · · · = 1, 2, 3.

• Generation indices are m,n = 1, 2, 3.

• SU(2)L indices of fermions are kept implicit. We write them as matrices.
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There are three generation (copies) of fermions. For each generation, left-
handed quarks and leptons form SU(2)L doublets

QLmi =

(
uLmi
dLmi

)
, (Y = 1/6) , LLm =

(
νLm
eLm

)
, (Y = −1/2) , (148)

whereas their right-handed counterparts are singlet under the SU(2)L,

uRmi , (Y = 2/3) , dRmi , (Y = −1/3) , eRm , (Y = −1) . (149)

The corresponding value of hypercharge is given by Y in bracket behind each
field above.

In addition, the SM also contains one SU(2)L doublet scalar field

Φ =

(
φ1

φ2

)
, (150)

with hypercharge Y = 1/2. Both φ1 and φ2 are complex scalars.
That’s all the particle content. The SM is constructed with gauge symmetry

as the guiding principle. It contains no pure gauge singlet.
With the above particles, we can write down the Lagrangian of SM

LSM = −1

4
GαµνG

αµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν

+ Q̄Lmii��DQLmi + L̄Lmi��DLLm + ūRmii��DuRmi + d̄Rmii��DdRmi + ēRmi��DeRm

+ (DµΦ)†(DµΦ)− V (Φ†Φ)

−
[
(Yu)mnQ̄LmiΦ̃uRmi + (Yd)mnQ̄LmiΦdRmi + (Ye)mnL̄LmΦeRm + h.c.

]
.

(151)

To write down the Yukawa coupling for generating the up-type quark mass, we
introduced

Φ̃ = iσ2Φ∗ , (152)

which transforms the same way as Φ under SU(2)L (can be shown using the
identity σ2~σ

∗ = −~σσ2), but has a hypercharge −1/2.
The covariant derivative acting on various fields take the form

DµQLmi = ∂µQLmi − i
(
g3G

α
µ

λαij
2

+ g2W
a
µ

σa

2
δij + g1Bµ

1

6
δij

)
QLmj ,

DµuRmi = ∂µuRmi − i
(
g3G

α
µ

λαij
2

+ Ø + g1Bµ
2

3
δij

)
uRmj ,

DµdRmi = ∂µdRmi − i
(
g3G

α
µ

λαij
2

+ Ø + g1Bµ

(
−1

3

)
δij

)
dRmj ,

DµLLm = ∂µLLm − i
(

Ø + g2W
a
µ

σa

2
+ g1Bµ

(
−1

2

))
LLm ,

DµeRm = ∂µeRm − i
(

Ø + Ø + g1Bµ (−1)

)
eRm ,

DµΦ = ∂µΦ− i
(

Ø + g2W
a
µ

σa

2
+ g1Bµ

(
1

2

))
Φ .

(153)
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2.2 Electroweak symmetry breaking

The electroweak symmetries SU(2)L × U(1)Y are broken because the scalar
doublet Φ develops a VEV. The scalar potential in Eq. (151) takes the form

V (Φ†Φ) = λ
(
Φ†Φ− v2/2

)2
, (154)

where v is a real parameter. Such a potential is minimized with

〈Φ†Φ〉 = |φ1|2 + |φ2|2 = v2/2 . (155)

The freedom to assign the VEV to either real or imaginary parts of φ1 and
φ2 corresponds to the original SU(2)L symmetry. Hereafter, we make a choice
where

〈Φ〉 =

(
0
v√
2

)
, (156)

i.e., only the real part of φ2 gets a VEV. As discussed earlier, this VEV is the
classical field value of φ2 that fills throughout the spacetime.

Next, we talk about excitations. In the nonlinear realization, the scalar
doublet can be organized as

Φ = exp (iGaσa/v)

(
0
v+h√

2

)
, (157)

where h(x) andGa(x) are the Higgs boson and three would-be Goldstone bosons,
respectively. Making analogy to the U(1) example discussed in section 1.4.3, we
can perform an SU(2)L × U(1)Y rotation and remove the would-be goldstone
bosons with a redefinition of the gauge bosons. This leads us to the unitary
gauge, where

Φ =

(
0
v+h√

2

)
. (158)

Plugging Eq. (158) into the kinetic term of Φ in Eq. (151), we find

DµΦ =
1√
2

(
0
∂µh

)
− i

2
√

2

(
g2W

3µ+ g1Bµ
√

2W+
µ√

2W−µ −g2W
3µ+ g1Bµ

)(
0

v + h

)
,

(DµΦ)†(DµΦ) =
1

2
∂µh∂

µh

+
1

8

[
2g2

2W
−
µ W

+µ + (−g2W
3
µ + g1Bµ)(−g2W

3µ + g1B
µ)
]

(v + h)2 ,

(159)

where we have defined the charged W -boson fields

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ) . (160)
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Reading from Eq. (159), we find some gauge bosons become massive. First, the
charged W -boson mass is

MW =
1

2
g2v . (161)

Nest, it is useful to define the neutral Z-boson

Zµ =
1√

g2
1 + g2

2

(g2W
3
µ − g1Bµ) = cos θWW

3
µ − sin θWBµ , (162)

where we introduce the weak mixing angle θW ,

tan θW ≡
g1

g2
. (163)

The mass of the Z-boson is

MZ =
1

2

√
g2

1 + g2
2v =

MW

cos θW
. (164)

The last line is a tree-level prediction of the SM. It originates from a remaining
custodial symmetry SO(4) → SO(3) of the scalar potential. Experimentally,
MW,Z and θW can be measured independently, leading to a test of the SM.

There is one massless gauge boson after the Higgs mechanism, which is
orthogonal to the Z boson,

Aµ = sin θWW
3
µ + cos θWBµ . (165)

It will play the role of the photon, for electromagnetism.
Plugging Eq. (158) into the scalar potential Eq. (154), we get

V (h) =
λ

4
(h2 + 2vh)2 . (166)

Picking the quadratic term, we find the Higgs boson mass is

m2
h = 2λv2 . (167)

The rest are Higgs boson self-interaction terms. These interactions are yet to
be directly measured experimentally.

A nonzero electroweak breaking VEV also generate mass for quarks and
charged leptons, through the Yukawa couplings in Eq. (151). Using 〈Φ̃〉 =
(v/
√

2, 0)T , we get the fermion mass terms

Lm = −
[
ūLMuuR + d̄LMddR + ēLMeeR + h.c.

]
, (168)

where
Mu = Yu

v√
2
, Md = Yd

v√
2
, Me = Ye

v√
2
, (169)
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are 3× 3 mass matrices in the generation space. They are complex matrices. In
general, each can be diagonalized with two unitary matrices

Mu = U†u

mu

mc

mt

Vu ≡ U†uM̂uVu ,

Md = U†d

md

ms

mb

Vd ≡ U†dM̂dVd ,

Me = U†e

me

mµ

mτ

Ve ≡ U†e M̂eVe ,

(170)

where the mass eigenvalues in the diagonalized matrices can be made real by
properly redefining the phase of the fermion fields.

If we define,u1L

u2L

u3L

 = Uu

uLcL
tL

 ,

u1R

u2R

u3R

 = Vu

uRcR
tR

 ,

d1L

d2L

d3L

 = Ud

dLsL
bL

 ,

d1R

d2R

d3R

 = Vd

dRsR
bR

 ,

e1L

e2L

e3L

 = Ue

eLµL
τL

 ,

e1R

e2R

e3R

 = Ve

eRµR
τR

 ,

(171)

the mass term Lagrangian can be written as

Lm = −
(
ūL c̄L t̄L

)mu

mc

mt

uRcR
tR

− (d̄L s̄L b̄L
)md

ms

mb

dRsR
bR


−
(
ēL µ̄L τ̄L

)me

mµ

mτ

eRµR
τR

+ h.c. .

(172)

Now in this Lagrangian, all the fermions are in the mass basis. They are physical
fields shown in the table at the beginning of this section.

In summary, spontaneous breaking of the electroweak symmetries generates
masses for the W,Z bosons, quarks and charged leptons. Their masses were
forbidden by gauge invariance in the first place. Now that the gauge symme-
tries are spontaneously broken by the scalar doublet VEV, mass terms become
possible. No wonder all the nonzero masses are proportional to the VEV v.

After electroweak symmetry breaking, the particles are remain massless in-
clude the photon (due to a remaining good gauge symmetry) and neutrinos (due
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to the absence of right-handed neutrinos). The SU(3)c for strong interaction is
not spontaneously broken, but it generates a mass gap for gluons at low energy
for a different reason. In reality, neutrino oscillation experiments have shown
that neutrinos must be massive. This calls for explanation from beyond the SM
physics.

2.3 Interactions

2.3.1 Higgs boson interactions

To derive the Higgs boson couplings to gauge bosons and fermions, here is a
useful rule of thumb. The observation is that the Higgs field only arises from the
scalar doublet Φ, along with the electroweak VEV. See Eq. (158). As a result,
whenever a v occurs in the Lagrangian, it is legitimate make the replacement

v → v

(
1 +

h

v

)
. (173)

Doing this for the mass terms, it can correctly generate Higgs interactions with
the corresponding massive particles. 2

The interactions between the Higgs boson and W,Z bosons are derived from
their mass terms, by making the above replacement and using M2

W,Z ∝ v2,

LhV V = M2
W

(
1 +

h

v

)2

W+
µ W

−µ +
1

2
M2
Z

(
1 +

h

v

)2

ZµZ
µ

⊃M2
W

(
h2

v2
+

2h

v

)
W+
µ W

−µ +
M2
Z

2

(
h2

v2
+

2h

v

)
ZµZ

µ .

(174)

Because the photon and gluons remain massless after electroweak symmetry
breaking, the Higgs boson does not couple to them at tree level. Their couplings
are generated at loop level.

The interactions between the Higgs boson and massive fermion f are derived
similarly, by noticing mf ∝ v,

Lhff̄ = −mf

(
1 +

h

v

)
f̄f ⊃ −mf

v
hf̄f . (175)

2.3.2 Charged-current interactions

The charged-current (CC) interactions describes how the W± bosons couple
to fermions. Starting from the original Lagrangian Eq. (151), in the covariant
derivative terms, the interaction terms for W 1,2

µ bosons are

LCC =
g2√

2
(ūLmγ

µdLm + ν̄Lmγ
µeLm)W+

µ + h.c. (176)

2Note the above replacement rule breaks down for the scalar potential which contains the
v2 parameter which does not originate from the doublet VEV. Instead, it is the origin for the
VEV. This only affects the Higgs self-interactions, and we should simply expand Eq. (166).
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Here the uLm, dLm, eLm are still in the weak basis. Going to the mass basis
using the relations in Eq. (171), we get

LCC =
g2√

2

(
ū c̄ t̄

)
U†uUdPL

ds
b

W+
µ +

g2√
2

(
ν̄1L ν̄2L ν̄3L

)
UePL

eµ
τ

W+
µ + h.c.

=
g2√

2

(
ū c̄ t̄

)
VCKMPL

ds
b

W+
µ +

g2√
2

(
ν̄e ν̄µ ν̄τ

)
UePL

eµ
τ

W+
µ + h.c.

(177)

In the second line, we introduce the Cabibbo-Kobayash-Maskawa matrix as the
product of left-handed up- and down-type quark rotation matrices. Because
neutrinos are massless in the SM, we are free to take arbitrary linear combina-
tions of them. For convenience, we define neutrino flavor eigenstates νe, νµ, ντ
so that the CC interactions in the lepton sector are flavor diagonal.

The Wolfenstein parametrization of the CKM matrix takes the form

VSKM =

 1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (178)

where λ = 0.22 is a small parameter. The other parameters A, ρ, η are all order
one. The CKM matrix is very close to a unit matrix, but with small flavor off-
diagonal elements. This is the only way in the SM where fermions from different
generations can couple to each other, which plays important role in heavy quark
decays. The CKM matrix element is also complex in the (13) and (31) elements
leading to CP violation effects.

Establishing the CKM structure as the origin of quark flavor and CP vio-
lation effects in the SM is an extremely exciting chapter that lasted until the
first decade of this century. For more details, see https://pdg.lbl.gov/2022/

reviews/rpp2022-rev-ckm-matrix.pdf.

2.3.3 Neutral-current interactions

The neutral-current (NC) interactions describes how the Z boson and photon
couple to fermions. To derive them we reverse the relations in Eqs. (162) and
(165), and resort to the gauge coupling terms of W 3

µ and Bµ in the original
Lagrangian Eq. (151). Without loss of generality, we write down their couplings
with a fermion f , where f can be any fermion in the SM,

LNC = f̄L
(
g2γ

µW 3
µT3L + g1γ

µBµYL
)
fL + f̄Rg1γ

µBµYRfR , (179)

where T3L is called the weak isospin quantum number, T3L = 1
2 for up-type

quarks and neutrinos, T3L = − 1
2 for down-type quarks and charged leptons.

For convenience we can define T3L = 0 for all right-handed fermions. YL,R are
the hypercharges for fL, fR, respectively.
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In terms of the Zµ and Aµ fields, the NC interactions read

LNC = ef̄γµ [(T3L + YL)PL + YRPR] fAµ

+
e

sin θW cos θW
f̄γµ

[
T3LPL −Q sin2 θW

]
fZµ .

(180)

The first line corresponds to the regular QED interactions. It is a vector current
interaction because for all SM fermions, we have T3L + YL = YR. This allows
us to define the electric charge of a fermion as

Q = T3L + Y . (181)

The second line in Eq. (180) is the neutral-current interaction mediated by
the massive Z-boson. It is often useful to rewrite it as

LZNC = gZ f̄γ
µ [gV + gAγ5] fZµ , (182)

where

gZ =
e

sin θW cos θW
, gV =

1

2
T3L −Q sin2 θW , gA = −1

2
T3L . (183)

Importantly, the Z coupling is universal for all three generations, thus we can
directly consider the above f as the physical mass eigenstates.

2.3.4 Gluon interactions

The gluon quark interactions are also universal all three generations, thus we
can directly work in the mass basis and write down

Lgff̄ =
∑

q=u,d,s,c,b,t

g3

2
q̄iγ

µλαijqjG
α
µ . (184)

2.3.5 Gauge boson self-interactions

The non-abelian gauge bosons also have self-interactions, generated from their
kinetic term. For example, gluons have three- and four-point self-interactions.

Because the W± bosons carry electric charge, they can form a current and
couple to Z and γ.

Because the U(1) hypercharge gauge boson does not self-interact, there are
no interactions involving Z-bosons and photons.

The reader can find all these interactions in the appendix of textbook by
Cheng and Li.

2.4 Gauge anomaly cancellation

2.4.1 What goes wrong with the ABJ anomaly?

In this note we discuss the problem with gauge anomalies in a toy model with
gauged U(1)L × U(1)e.m. symmetries. The Lagrangian is

L = −1

4
XµνX

µν − 1

4
FµνF

µν + iψ̄γµ∂µψ + eψ̄γµψAµ + gψ̄Lγ
µψLXµ , (185)
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where Aµ is the photon and Fµν is the corresponding field strength. Xµ is the
gauge boson of the new U(1)L symmetry. Only the left-handed fermion ψL
carries the U(1)L charge.

Under the U(1)L gauge transformation,

ψL → eiω(x)ψL , ψR → ψR , Xµ → Xµ + ∂µω(x) , (186)

The Lagrangian is invariant. So it looks like a good symmetry.
Due to the chiral nature of this theory, we are not allowed to write down a

mass term for the fermion ψ.
We could further introduce a scalar charged under the U(1)L and write down

its Yukawa coupling to ψ̄LψR. It could generate a fermion mass if ψ gets a VEV.
This corresponds to the spontaneous U(1)L symmetry breaking, which we are
not interested here.

The problem occurs at quantum level. Through the triangle diagram with
XAA as external states (details omitted), we can find the left-handed current
JµL = ψ̄Lγ

µψL is not conserved, because it contains an axial current part,

∂µJ
µ
L = −1

2
∂µ(ψ̄γµγ5ψ) = −1

2
× (− e2

16π2
)εµνρσFµνFρσ =

e2

32π2
εµνρσFµνFρσ .

(187)
So the current is not conserved!

This is in contradiction with the general expectation that before any sym-
metry breaking, a gauge boson must couple to a conserved current. This is the
origin of the Ward identity. In the above simple model, the Ward identity can
be derived using the Euler-Lagrange equation for Xµ, which takes the form

2Aµ − ∂µ∂νAν + gJµL = 0 . (188)

Apply another ∂µ to every term, we get

∂µJ
µ
L = 0 , (189)

which implies the current JµL is conserved.
In the presence of the quantum level anomaly, to make it consistent with

the equation of motion, we need to modify the original Lagrangian by adding
an extra term (called the Wess-Zumino term)

∆L = −g e2

16π2
εµνρσXµAνFρσ . (190)

This will add another term to the right-hand side of the above equation of
motion Eq. (188), which now takes the form

2Aµ − ∂µ∂νAν + gJµL − g
e2

16π2
εµνρσAνFρσ = 0 . (191)

Like before, we apply another ∂µ to every term which leads to

g∂µJ
µ
L − g

e2

16π2
εµνρσ∂µ(AνFρσ) = 0 . (192)
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Clearly, in the last term, the derivative ∂µ must hit Aν for to be nonzero. We
can rewrite it as (remove the common factor g)

∂µJ
µ
L −

e2

32π2
εµνρσFµνFρσ = 0 , (193)

which is the same equation as Eq. (187).
However, the remaining problem here is that the Wess-Zumino term, Eq. (190),

is not gauge invariant. In other word, the ABJ anomaly would make a gauge
theory not gauge invariant. It must not exist or be canceled away.

2.4.2 How the SM works

Because the SM is chiral, it could suffer from the same problem of anomaly-
induced loss of gauge invariance as the above toy model. Because the ABJ
anomaly is independent of fermion masses, this is already an issue before elec-
troweak symmetry breaking, as soon as we write down Eq. (151). One cannot
argue it away by saying that the electroweak symmetry is broken thus gauge
invariance is gone.

SM avoids this problem by cancellation.

X

Y

Z

Let’s first consider a concrete case of the above triangle diagram where the
X is W 3

µ gauge boson, and Y, Z are both gluons. As the gauge boson from
SU(2)L, W 3 only couples to left-handed quarks and leptons. Among them only
quarks can couple to gluons (Y, Z). Therefore, the relevant current that couples
to W 3

µ here is

J3µ
L =

1

2
Q̄Lγ

µσ3QL =
1

2

(
ūLγ

µuL − d̄LγµdL
)
. (194)

Therefore, although each term in this current suffers from the ABJ anomaly,
the difference between ūLγ

µuL and d̄Lγ
µdL is anomaly free. This can be sum-

marized as the traceless condition of σ3. In other words, the triangle diagram
here is proportional to

Tr(σ3)Tr(λαλβ) = 0 . (195)

With this experience, we can move on to enumerate all the combinations of
X,Y, Z from the SM gauge groups.

• (3, 3, 3). f all the external gauge bosons are gluons. Because all glu-
ons couple to vector currents which treat left- and right-handed fermions
equally. There is no issue to ABJ anomaly.
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• (3, 3, 2). We just worked out this example above and showed that it is
anomaly free because Tr(σa) = 0.

• (3, 3, 1). The hypercharge current is also chiral, thus the anomaly is
potentially an issue. We have to put all quarks in the loop. Note that left-
handed current and right-handed currents differ by a minus sign in their
anomalies, due to the opposite signs in front of γ5 (axial current part).
The sum over all quark hypercharges from (QL, uR, dR) per generation is

3color ×
[
2doublet ×

1

6
− 2

3
−
(
−1

3

)]
= 0 . (196)

• (3, 2, 2), (3, 2, 1), (3, 1, 1). They all vanish because they are proportional
to a factor of Tr(λα) = 0.

• (2, 2, 2). This one is somewhat non-trivial. For each SU(2)L doublet
fermion running in the loop, the triangle diagram is proportional to (has
to be totally symmetric with respect to a, b, c)

Tr(σa {σb, σc}) = 2δbcTr(σa) = 0 . (197)

We are lucky because SU(2) is special. Were SU(3) chiral, the counterpart{
λα, λβ

}
is not proportional to a unit matrix and we would not get zero.

• (2, 2, 1). We need to sum up contributions from quark and lepton doublets.
For each generation, the triangle diagram has a factor

3color ×
1

6
+

(
−1

2

)
= 0 . (198)

• (2, 1, 1). This contribution vanishes because Tr(σa) = 0.

• (1, 1, 1). This contribution involves everybody. For each generation, it is
proportional to

3color × 2doublet ×
(

1

6

)3

+ 2doublet ×
(
−1

2

)3

− 3color ×
(

2

3

)3

− 3color ×
(
−1

3

)3

− (−1)3 = 0 .

(199)

• (1, gravity, gravity). This is called gravitational anomaly of U(1)Y , which
vanishes because

3color × 2doublet ×
(

1

6

)
+ 2doublet ×

(
−1

2

)
− 3color ×

(
2

3

)
− 3color ×

(
−1

3

)
− (−1) = 0 .

(200)
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That is all the possibilities. We have verified that the SM is indeed free from
all gauge anomalies.

As an additional remark, with the SM fermion fields, we can construct other
currents such as the baryon or lepton number currents. They are also conserved
currents at tree level and correspond to accidental global symmetries of the SM.
However, after including the ABJ anomalies, they are no longer conserved. The
above cancellations do not work for these global currents.

A theory with anomalous global currents is still healthy. They could even
do good things for the nature, such as baryogenesis.

2.5 Θ terms

At renormalizable level, one can also add the following Θ terms to the SM
Lagrangian,

LΘ = Θ3G
α
µνG̃

αµν + Θ2W
a
µνW̃

aµν + Θ1BµνB̃
µν , (201)

where G̃αµν ≡ 1
2ε
µνρσGρσ, and similarly for W and B.

It is easiest to show that the last term is equivalent to a total derivative

BµνB̃
µν = 2(∂µBν)B̃µν = 2∂µ

(
BνB̃

µν
)
− 2Bν∂µB̃

µν = ∂µ

(
εµνρσBνBρσ

)
,

(202)

where we used ∂µB̃
µν which is obvious.

For the non-abelian terms, there is an extra term in the “current”. We work
out the gluon case explicitly,

GαµνG̃
αµν = ∂µ

[
εµνρσ

(
GανG

α
ρσ −

1

3
g3f

αβγGανG
β
ρG

γ
σ

)]
. (203)

It is straightforward to expand both sides the check the equality holds. One
useful thing to note is the vanishment of the G4 term

εµνρσ
(
fαβγGβµG

γ
ν

) (
fαβ

′γ′Gβ
′

ρ G
γ′

σ

)
=− 2εµνρσGβµG

γ
νG

β′

ρ G
γ′

σ Tr
(

[T β , T γ ][T β
′
, T γ

′
]
)

=− 8εµνρσGβµG
γ
νG

β′

ρ G
γ′

σ Tr
(
T βT γT β

′
T γ
′
)

= + 8ενρσµGγνG
β′

ρ G
γ′

σ G
β
µTr

(
T γT β

′
T γ
′
T β
)
.

(204)

The last two lines are obviously opposite to each other, after renaming the labels
correspondingly.

So all the Θ terms can be written as total derivatively. Naively, one would ex-
pect them to have no physical effect. This is indeed the case for the SU(2)L and
U(1)Y Θ-terms. However, SU(3)c is different, because of its rich vacuum struc-
ture, and its coupling goes strong at low energies, leading to non-perturbative
instanton processes that allow transitions to occur among various degenerate
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minima carrying different topological numbers. These effects make the Θ3 term
physical. See https://inspirehep.net/literature/3673 for more details.

Because the Θ terms is odd under parity and time-reversal transformations,
a nonzero Θ3 contributes to the neutron electric dipole moment. Currently
experimental bound requires Θ3 . 1010, in the basis where all quark masses are
real.

2.6 Tools for calculation

2.6.1 Decay rate and cross section

The decay rate for 1→ 2 + 3 + · · · process is

Γ =
1

2M

∫
dΠf (2π)4δ4(p1 −

∑
f

pf )|M|2 , (205)

where M is mass of the decay particle 1.
The cross section for 1 + 2→ 3 + 4 + · · · process is

σ =
1

4f

∫
dΠf (2π)4δ4(p1 + p2 −

∑
f

pf )|M|2 , (206)

where the prefactor can be rewritten as

4f = 4
√

(p1 · p2)2 −m2
1m

2
2 = 4

√
(E1E2 − ~p1 · ~p2)2 −m2

1m
2
2

= 4E1E2

√
(1− ~v1 · ~v2)2 − (1− |~v1|2)(1− |~v2|2)

= 4E1E2

√
(1− 2~v1 · ~v2 + (~v1 · ~v2)2)− (1− |~v1|2 − |~v2|2 + |~v1|2|~v2|2)

= 4E1E2

√
(~v1 − ~v2)

2
+ (~v1 · ~v2)2 − |~v1|2|~v2|2

= 4E1E2

√
(~v1 − ~v2)

2 − (~v1 × ~v2)2

≡ 4E1E2vMøller .

(207)

In the last line we have introduced the definition of the Møller velocity,

vMøller ≡
√

(~v1 − ~v2)
2 − (~v1 × ~v2)2. (208)

It is a Lorentz invariant quantity.
Special cases:

• For face-to-face scattering, such as LHC, Tevatron, LEP, we have ~v1//~v2.
In this case vMøller = |~v1 − ~v2| is equal to the relative velocity.

• For fixed-target experiments, we have ~v2 = 0. In this case vMøller =
|~v1 − ~v2| = |~v1| is equal to the relative velocity.
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• For non-relativistic particle scattering, such as WIMP dark matter freeze
out in early universe, we have |~v1|, |~v2| � c. In this case vMøller ' |~v1−~v2|
is “approximately” the relative velocity.

• For ultra-relativistic particle interactions in a thermal plasma, such as very
early universe, we have |~v1| = |~v2| = c. In general, the relative angle can

take any value. In this case, vMøller = c
√

2− 2 cos θ + sin2 θ = (1−cos θ)c.

See the “kinematics” section of the Review of Particle Physics for further de-
tails, https://pdg.lbl.gov/2022/reviews/rpp2022-rev-kinematics.pdf, in
particular, simplified two- and three-body final state phase space integrals for
decay and scattering (for unpolarized processes).

2.6.2 SM at various energy scales

The Standard Model is a good theory and can successfully describe elementary
particle physics processes from very low to very high energy scales.

The Higgs VEV is v = 246 GeV, which is called the electroweak scale. All
elementary particle masses in the SM are proportional to (below) this scale.
If we build experiments that collide SM particles at very high center-of-mass
energies, ECM � v, the cross sections which is a function of ECM and masses
can be Taylor expanded in series of small m/ECM

σ

(
ECM,

m

ECM

)
= σ (ECM, 0) + · · · . (209)

For ECM � m ∼ v, the zeroth order terms dominates. The scattering occurs
approximately as if all particles are massless and electroweak symmetry is “re-
stored”. In this case, we simply have σ ∼ 1/E2

CM from dimension analysis,
which is a boring featureless power law.

For collisions with ECM around or below the electroweak scale, the ECM

dependence in σ will be interesting, featured with various Breit-Wigner peaks
when ECM crosses particle mass thresholds (see Section 4).

At very low energies ECM . GeV scale, interesting phenomenon occurs for
the strong interaction SU(3)c, where quarks and gluons confine into hadrons
(proton, neutron, pion, etc). To describe strong interaction at low energies, we
need effective theories that describe the new degrees of freedom (see Section 5).
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3 Particle Decays

3.1 Z and W boson decays

3.1.1 Unpolarized Z decay

In the SM, the Z-boson couples to all the fermions. Because of its large mass,
the Z-boson can decay into all fermion-anti-fermion pairs, except for tt̄. They
comprise the leading decay modes. The Z-f -f̄ interaction terms in the SM
Lagrangian are

Lint = gZ f̄γ
µ(gV + gAγ5)fZµ , (210)

where gZ = e/(sin θW cos θW ), gV = 1
2T3L −Q sin2 θW , and gA = − 1

2T3L.
The decay process Z → ff̄ is shown by the following Feynman diagram

(time flows from left to right).

Z(k)

f(p1)

f(p2)
_

The corresponding decay amplitude is

iM = gZ ū(p1, s1)γµ(gV + gAγ5)v(p2, s2)εµ(k, λ) . (211)

For simplicity, we drop the arrow over the momenta, with the understanding
that all particles are on-shell.
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For unpolarized Z decay, we square the amplitude, sum over final state spins
and colors, and average over the initial spin degrees of freedom for the Z-boson,

|M|2 =
1

3

∑
s1,s2,λ

g2
Z [ū(p1, s1)γµ(gV + gAγ5)v(p2, s2)]εµ(k, λ)

× [v̄(p2, s2)γν(gV + gAγ5)u(p1, s1)]εν∗(k, λ)

=
1

3
g2
ZTr [(�p1 +mf )γµ(gV + gAγ5)(�p2 −mf )γν(gV + gAγ5)]

(
−gµν +

kµkν
M2
Z

)
,

(212)

where in the second step, we used Eqs. (53) and (76).
To do the fermion trace, we need to know that Tr(γµγνγργσγ5) = −4iεµνρσ.

If fewer γ matrices are taken trace with a γ5, the result is zero. We also need
to know the kinematics well, where k = p1 + p2, k2 = M2

Z , p2
1 = p2

2 = m2
f ,

p1 · p2 = 1
2 (M2

Z − 2m2
f ), p1 · k = p2 · k = 1

2M
2
Z . The rest is just patience. We

will eventually get

|M|2 =
4Nc

3
g2
Z

[
(g2
V + g2

A)M2
Z + 2(g2

V − 2g2
A)m2

f

]
. (213)

A color factor Nc = 3 is added in case Z decays into quarks. Nc = 1 for charged
lepton and neutrino final states.

The unpolarized partial decay rate is then

ΓZ→ff̄ =
1

8π

|~p1cm|
M2
Z

|M|2 =
Ncg

2
ZMZ

12π

[
(g2
V + g2

A) + 2(g2
V − 2g2

A)
m2
f

M2
Z

]√
1−

4m2
f

M2
Z

,

(214)
where we used the decay momentum in center-of-mass frame,

|~p1cm| =
MZ

2

√
1−

4m2
f

M2
Z

. (215)

In reality, the Z boson is much heavier than the heaviest fermion it can
decay into, the bottom quark. Thus we can suppress the terms proportional to
fermion mass in Γ, wen reach a simpler expression for the partial decay rate

Γ ' Nc(g
2
V + g2

A)
√

2GFM
3
Z

3π
. (216)

In the last step, we introduced the Fermi constant

GF =

√
2g2

2

8M2
W

= 1.16× 10−5 GeV−2 , (217)

and used the tree-level relation MW /MZ = cos θW .
Let’s go over each possible final state of Z decay:
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• f = u, c. In this case, T3L = 1
2 , Q = 2

3 . The value of sin2 θW = 0.23 is
close to a quarter. This leads to

g2
V + g2

A ≈
10

144
. (218)

• f = d, s, b. In this case, T3L = − 1
2 , Q = − 1

3 . This leads to

g2
V + g2

A ≈
13

144
. (219)

• f = e, µ, τ . In this case, T3L = − 1
2 , Q = −1. This leads to

g2
V + g2

A ≈
9

144
. (220)

• f = νe, νµ, ντ . In this case, T3L = 1
2 , Q = 0. This leads to

g2
V + g2

A ≈
18

144
. (221)

The total decay width of the Z boson is

Γtotal
Z ≈

√
2GFM

3
Z

3π

[
2× 3× 10

144
+ 3× 3× 13

144
+ 3× 9

144
+ 3× 18

144

]
≈ 2.4 GeV .

(222)

This is a fairly large width. All the Z bosons will decay promptly after they are
produced in particle collider experiments.

Experimentally, at e+e− colliders such as LEP, the Z-boson total decay
width can be measured by studying the process e+e− → Z → ff̄ , and the
invariant mass distribution of the final state f, f̄ . It works the best if the final
states are e+e− or µ+µ−, whose four momenta can be most precisely measured.
We will discuss the Breit-Wigner resonance in Section 4.

Another important concept when studying particle decays is the decay branch-
ing ratio into a particular type of final states. For the decay of Z, we can measure

• Hadronic decay mode: Z → qq̄, where q includes all types of quarks. The
branching ratio is

Brhad =

∑
q ΓZ→qq̄

Γtotal
Z

≈ 177

258
≈ 70% . (223)

• Leptonic decay mode: Z → `+`−, where ` = e, µ, τ . The branching ratio
is

Brlep =

∑
` ΓZ→`+`−

Γtotal
Z

≈ 27

258
≈ 10% . (224)

Each charged lepton flavor has about 3% branching ratio.
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• Invisible decay mode: Z → νν̄. Neutrinos are not visible to the detectors
of collider experiments. The branching ratio is

Brinv =

∑
` ΓZ→νν̄

Γtotal
Z

≈ 54

258
≈ 20% . (225)

Experimentally, we can tell the invisible decay occurs by comparing the
expected number of produced Z bosons with those that have decayed
visibly.

3.1.2 Polarized Z decay

For polarized Z decay, we can repeat the previous calculation up to Eq. (212),
but in the last step, we do not sum over the index λ. For given λ, we work out
the explicit form of the polarization vectors. Using Eq. (75), in the rest frame
of the Z boson, we have

εµ,λ=±1 =
1√
2

(0, 1,±i, 0) ,

εµ,λ=0 = (0, 0, 0, 1) .

(226)

The amplitude square for a given polarization is (neglecting the fermion masses
for simplicity)

|Mλ|2 = Ncg
2
ZTr

[
(�p1 +mf )�ε

λ(gV + gAγ5)(�p2 −mf )�ε
λ∗(gV + gAγ5)

]
' Ncg2

ZTr
[
�p1�ε

λ(gV + gAγ5)�p2�ε
λ∗(gV + gAγ5)

]
= Ncg

2
Z(g2

V + g2
A)Tr

[
�p1�ε

λ
�p2�ε

λ∗
]

= 4Ncg
2
Z(g2

V + g2
A)
[
(p1 · ελ)(p2 · ελ∗)− (p1 · p2)(ελ · ελ∗) + (p1 · ελ∗)(p2 · ελ)

]
= 4Ncg

2
Z(g2

V + g2
A)

[
(p1 · ελ)(p2 · ελ∗) +

1

2
M2
Z + (p1 · ελ∗)(p2 · ελ)

]
.

(227)

Next, we write down the four momenta p1,2 explicitly as well. Assuming f
travels in the (θ, φ) direction, and f̄ in the opposite direction in the center-of-
mass frame,

pµ1 =
MZ

2
(1, sin θ cosφ, sin θ sinφ, cos θ) ,

pµ2 =
MZ

2
(1,− sin θ cosφ,− sin θ sinφ,− cos θ) .

(228)

Together with Eq. (226), we find

|Mλ|2 = 2Ncg
2
Z(g2

V + g2
A)M2

Z ×
{

1
2 (1 + cos2 θ) , λ = ±1 ,
1− cos2 θ , λ = 0 .

(229)
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This leads to several important findings. First, the average of |M0,±1|2 has
no θ dependence, and reproduces the unpolarized result. Eq. (213).

Second, after integrating over the final state phase space, we obtain the same
decay rate for all polarization cases,

Γλ=0 = Γλ=±1 =
Ncg

2
Z(g2

V + g2
A)MZ

12π
, (230)

the same as Eq. (214) in the massless fermion limit. This is expected, because
they are the same particle Z.

Third, the differential decay rate with respect to cos θ is a measurable quan-
tity experimentally. For the three cases, we have

1

Γλ

dΓλ
d cos θ

=
3

4
×
{

1
2 (1 + cos2 θ) , λ = ±1 ,
1− cos2 θ , λ = 0 .

(231)

These angular distribution functions are depicted in the following figure.
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3.1.3 W decay

Similar to the Z boson, the decays of charged W boson is also dominated by
fermion-anti-fermion final states. Using Eq. (177), the relevant interactions can
be written as

LCC =
g2√

2
W+
µ

(
V CKM
ij ūiγ

µPLdj + ν̄iγ
µPLdj`i

)
+ h.c. (232)

where the fermions are already in the mass basis. The W boson cannot de-
cay into top quark because the latter is too heavy. The rest fermions are all
must lighter than the W . By neglecting those masses, we can repeat the same
calculation as for Z decays, but with the replacement

gZ →
g2√

2
V CKM
ij , gV →

1

2
, gA → −

1

2
, (233)

for decaying to quarks. For leptonic decays, the CKM matrix element is not
there. Applying this replacement to Eq. (214), we obtain

ΓW+→uid̄j '
|V CKM
ij |2Ncg2

2MZ

48π
, ΓW+→νi ¯̀i '

g2
2MZ

48π
. (234)
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Summing over the final state multiplicity, we obtain

Γtotal
W =

3

2∑
i=1

3∑
j=1

|V CKM
ij |2 + 3

 g2
2MZ

48π
=

3
√

2GFM
3
W

4π
= 2.04 GeV. (235)

This is comparable to Γtotal
Z . Both W and Z decay promptly at colliders.

The hadronic branching ratio of W decay is 67%. The leptonic branching
ratio is 11% for every flavor (e, µ, τ).

3.2 Higgs boson decay (and Higgs physics in brief)

The Higgs boson has several ways to decay in the SM that contribute to its
total decay width.

First, it can decay into fermion-anti-fermion pair, except for the top quark
(too heavy) and neutrinos (massless). Importantly, Eq. (175) tells that the
Higgs-fermion coupling is proportional the fermion mass. It implies that Higgs
prefers to decay into heavier fermions than lighter ones. Without details, this
decay rate is

Γh→ff̄ =

√
2NcGFm

2
fmh

8π

(
1−

4m2
f

m2
h

)3/2

. (236)

Here the factor (. . . )3/2 indicates this decay occurs in the P-wave. Higgs bo-
son is a parity even scalar and a fermion-anti-fermion pair has parity −(−1)L.
Due to parity conservation of the Higgs-fermion interaction, the orbital angular
momentum L must be an odd integer.

The heaviest fermion the Higgs boson can decay into is the bottom quark,
which is much lighter than the Higgs. This means we can always approximate
the (. . . )3/2 factor as 1. As a result Γh→ff̄ ∝ m2

f . The contribution from h→ bb̄
decay to the Higgs total width is

Γh→bb̄ '
3
√

2GFm
2
bmh

8π
' 4.3 MeV , (237)

where we used v2 = (
√

2GF )−1. The corresponding branching ratio is 58%. This
partial decay rate is thousand times lower than the Z,W decay width, because
the decay rate involves a small Yukawa coupling parameter, yb =

√
2mb/v =

0.024. For Z,W decay, the weak interaction gauge coupling g2 ' 0.65 is order
one. The bottom quarks from Higgs boson decay is very hard to detect at
the LHC, mainly due to the huge background of bb̄ production from strong
interaction. Jet substructure techniques have recently been proposed to search
for boosted h→ bb̄ decay (see https://arxiv.org/pdf/2006.13251.pdf), but
the significance has not reached 5σ yet.

Another important fermionic decay of the Higgs is to µ+µ−. Because the
muon is light, this branching ratio is much lower than bb̄, by a extra factor of
(mµ/mb)

2 ≈ 6 × 10−4. One of the task of the high-luminosity of LHC is to
discover the Higgs boson through this channel and test the SM prediction.
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Other Higgs boson decay modes include h → V V ∗ → V f̄f (V = Z,W )
which is a three-body decay, and h→ gg which occurs at loop level (top quark
in the loop). They contribute to the other 42% of branching ratio.

The 2012 Higgs boson discovery announcement was based on two decay
channels, h → γ and h → ZZ∗ → 4µ. Both have very small branching ratio
but are very clean signals.

At hadron colliders (e.g. the LHC), the Higgs is mainly produced in the
gluon fusion channel gg → h. AT e+e− colliders (e.g. future Higgs factory),
the dominant production is associate production, qq̄ (or e+e−)→ V ∗ → V h. A
great textbook to study the Higgs physics in depth is the Higgs Hunter’s Guide,
https://catalogue.library.cern/literature/r8p7d-xgg53.

3.3 Muon decay (and heavy quark decays)

In the SM, the forces carriers that the muon interacts with are γ, Z, h,W .
Among them the γ, Z, h couplings always involve two muons and thus cannot
make muon decay. The only way for muon to decay is

µ− → νµe
−ν̄e , (238)

which occurs through charged current interaction with an off-shell W boson
exchange, as shown by the Feynman diagram below. The relevant interacting
Lagrangian is the second term in Eq. (232).

e

e

_

W*

Here we work out the calculation details of unpolarized muon decay rate.
The momentum assignments we will use are µ(p0) → νµ(p1) + e(p2) + ν̄e(p3).
The decay amplitude is

iM =

(
ig2√

2

)2 [
ū(p1, s1)γµPLu(p0, s0)

] [
ū(p2, s2)γνPLv(p3, s3)

]
× i

(p2 + p3)2 −M2
W

(
−gµν +

(p0 − p1)µ(p2 + p3)ν
M2
W

)
,

(239)

where in the last bracket, we used p0 − p1 = p2 + p3.
The first thing we want to argue is that in the last bracket, the second term

inversely proportional to M2
W is negligible. This can be seen by contracting

(p0 − p1)µ and (p2 + p3)ν with the fermion currents and apply their equations
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of motion. Because neutrinos are massless, the only surviving terms are pro-
portional to m2

µ/M
2
W or m2

e/M
2
W . Both are much smaller than one. For this

reason, we will only keep the contribution from the gµν term in below.
Next, we square the amplitude, and sum over final state fermions spins, and

average over the initial state muon spins (assuming the muon is unpolarized).
This leads to

|M|2 =
1

2

g4
2

4[(p2 + p3)2 −M2
W ]2

Tr
[
�p1γ

µPL(��p0 +mν)γνPL

]
Tr
[
(�p2 +me)γµPL�p3γνPL

]
.

(240)

To complete the traces, we use the identities

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) ,

Tr(γµγνγργσγ5) = −4iεµνρσ ,
(241)

to obtain

Tr
[
�p1γ

µPL(��p0 +mν)γνPL

]
= 2(pµ1p

ν
0 + pν1p

µ
0 − p1 · p0g

µν) + 2iεαµβνp1αp0β ,

Tr
[
(�p2 +me)γµPL�p3γνPL

]
= 2(p2µp3ν + p2νp3µ − p2 · p3gµν) + 2iεα′µβ′νp

α′

2 p
β′

3 .

(242)

By further using the identity εαµβνεα′µβ′ν = −2(gαα′g
β
β′ − gαβ′g

β
α′), we obtain

|M|2 =
2g4

2

[(p2 + p3)2 −M2
W ]2

(p1 · p2)(p0 · p3) . (243)

For the above three-body decay, we can rewrite the momentum products as
(neglecting the electron mass hereafter)

p1 · p2 =
(p1 + p2)2 − p2

1 − p2
2

2
=
m2

12

2
,

p0 · p3 =
p2

0 + p2
3 − (p0 − p3)2

2
=
p2

0 + p2
3 − (p1 + p2)2

2
=
m2
µ −m2

12

2
,

(244)

where m2
12 ≡ (p1 + p2)2 is the invariant mass square of νµ and e.

We could also introduce two other invariant masses, m2
23 ≡ (p2 +p3)2 for the

invariant mass square of e and ν̄e, and m2
13 = (p1 + p3)2 for the invariant mass

of νµ and ν̄e. These three kinetic variables are not independent, they satisfy

m2
12 +m2

23 +m2
13 = p2

0 + p2
1 + p2

2 + p2
3 = m2

µ . (245)

Putting them together, we get

|M|2 =
g4

2

2[m2
23 −M2

W ]2
m2

12(m2
µ −m2

12) ' g4
2

2M4
W

m2
12(m2

µ −m2
12) = 16G2

Fm
2
12(m2

µ −m2
12) .

(246)
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In the second step, we make use of the mass hierarchies m2
23 < m2

µ �M2
W , and

keep the leading term (the large MW expansion).
To calculate the three-body decay rate, we use the simplified final state phase

space integral provided in the PDG review,

Γ =
1

(2π)3

1

32m3
µ

∫
dm2

12

∫
dm3

23|M|2 . (247)

The integral limits are

(m1 +m2)2 ≤ m2
12 ≤ (mµ −m3)2 , (248)

where the lower bound corresponds to particles 1,2 travel in parallel and recoil
against particle 3, and upper bound corresponds to 1,2 recoil against each other
whereas 3 is at rest, and

(m2
23)max

min = (E∗2 + E∗3 )2 −
(√

E∗22 −m2
2 ∓

√
E∗23 −m2

3

)2

,

E∗2 =
m2

12 −m2
1 +m2

2

2m12
, E∗3 =

m2
µ −m2

12 −m2
3

2m12
.

(249)

For massless final state particles 1, 2, 3 considered here,

0 ≤ m2
12 ≤ m2

µ , 0 ≤ m2
23 ≤ 4E∗2E

∗
3 = m2

µ −m2
12 . (250)

The decay rate can then be written as

Γ =
1

256π3m3
µ

∫ m2
µ

0

dm2
12

∫ m2
µ−m

2
12

0

dm3
23|M|2

=
G2
Fm

5
µ

16π3

∫ 1

0

dx

∫ 1−x

0

dyx(1− x) .

(251)

The dimensionless integrals over x and y gives 1
12 . Thus the leading order muon

decay rate is

Γ =
G2
Fm

5
µ

192π3
' 2.8× 10−19 GeV . (252)

The corresponding lifetime is

τ =
0.658× 10−24 GeV sec

Γ
' 2× 10−6 sec . (253)

If the muon is produced relativistically in a experiment, it can travel at least
a distance of ∼ cτ = 600 meters. This is a very large distance compared to
the size of a typical detector. Therefore, in collider experiments, muons are
treated as stable final state particles. (It is electrically charged, so not difficult
to detect.)

Another useful picture to have in mind is the production of high energy
particles due to cosmic ray bombarding on the earth’s atmosphere. With a
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boost factor of 100 (corresponding to 10 GeV in energy), the muon can travel a
distance of γcτ ∼ 60 km, that is roughly the thickness of the atmosphere. This
explains why we can see high energy particles by building a bubble chamber in
the ground.

It is not as easy to stop energetic muons in matter as electrons. Each colli-
sion of muon with an atomic electron only loses a small fraction of its energy,
because mµ � me. If we really need to stop the muons (such as in beam dump
experiments), we need to put a very thick piece of lead (or earth), along the
direction the muons travel.

I will not do polarized muon decay. It is a good exercise for you.

Before proceeding, we generalize the CC induced muon decay to other par-
ticles, including the τ lepton and heavy quarks (b, c, s). If the SM has no CC
weak interactions, all these particles would be stable. In reality, they all decay
via an off-shell W boson exchange (similar Feynman diagrams to muon decay).
The only exception is the top quark, which is heavier than the W boson. The
top quark simply decays as t→ b+W+, with a large decay width (1.32 GeV).

3.4 Integrating out the W boson

In the MW →∞ limit, the muon decay amplitude Eq. (239) can be written as

iM' −i2
√

2GF

[
ū(p1, s1)γµPLu(p0, s0)

] [
ū(p2, s2)γµPLv(p3, s3)

]
. (254)

This corresponds to an effective four-fermion interacting Lagrangian

Leff ' −2
√

2GF

[
ν̄µγ

µPLµ
] [
ēγµPLνe

]
, (255)

where we used the identity 2
√

2GF = g2
2/(2M

2
W ). Such a Lagrangian can be

formally obtained through the procedure of integrating out the W boson. The
relevant pieces from the original Standard Model Lagrangian are

L = −1

4
W+µνW−µν +M2

WW
+
µ W

−µ +
g√
2
W+
µ (ūγµd+ ν̄γµe) + h.c. , (256)

where we keep only one fermion generation for simplicity. When the W boson
is heavy, we are can drop its kinetic term. As a result, the W field becomes a
Lagrangian multiplier. Its equation of motion becomes

W−µ =
g√

2M2
W

(ūγµd+ ν̄γµe) , W+µ =
g√

2M2
W

(
d̄γµu+ ēγµν

)
. (257)

Plugging this back to the Lagrangian (with the W kinetic term already re-
moved), we get

Leff ' −2
√

2GF

[
ν̄γµPLe+ ūγµPLd

] [
ēγµPLνe + d̄γµPLu

]
, (258)

which includes the effective Lagrangian Eq. (255). As a bit more details, a
cancellation will occur between two of the terms in the Lagrangian, but the
third term (the h.c. part) survives. Eq. (258) also contains a term that can
induce the beta decay of neutron.
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3.5 Polarized neutron decay

As the last exercise of this section, we explore polarized neutron decay n→ peν̄e
through weak interaction, and try to appreciate how parity violation manifests
experimentally.

The effective Lagrangian for neutron decay is

Leff = −2
√

2GF

[
p̄γµPLn

] [
ēγµPLνe

]
. (259)

This is an approximation, which we will use for discussions in this subsection.
In reality, the 1−γ5 structure on the hadron side is given by gV − gAγ5. At low
energies, gV ' 1, gA ' 1.2.

Consider a neutron at rest with in a fixed spin state spin. Using Eq. (50),
the helicity spinor for such a neutron is

un =
√
mn

(
χs
χs

)
, where χs = a

(
1
0

)
+ b

(
1
0

)
, (260)

where |a2|+ |b|2 = 1. The matrix element square for neutron decay is

|M|2 = 8G2
F [ūnγ

µPL(�pp +mp)γ
νPLun] Tr(�peγµPL�pν̄γνPL)

' 8G2
Fmp

[
ūnγ

µγ0γνPLun
]

Tr(�peγµ�pν̄γνPL)

= 8G2
Fmp

[
χ†s(σ

µ + σ̄µ)σ̄νχs
]

Tr(�peγµ�pν̄γνPL)

= 16G2
Fmpδ

µ
0

[
χ†sσ̄

νχs
]

Tr(�peγµ�pν̄γνPL) .

(261)

We have summed over the spins of final state fermions, but not for the initial
state neutron which is polarized. We make the approximation that the final
state proton is still non-relativistic, thus �pp ' mpγ

0 in the second step. We also
introduce σµ ≡ (1, ~σ), σ̄µ ≡ (1,−~σ). The factor (σµ + σ̄µ) forces µ = 0 which
explains the last step.

To account for the information of neutron polarization, we will pick the
3-vector component out of the σ̄ν , i.e., letting ν = j.

The trace can be simply calculated (with µ = 0 and ν = j),

Tr(�peγ0�pν̄γjPL) = 2Ee(−pjν̄) + 2Eν̄(−pje)− 2pe · pν̄g0j + · · · . (262)

The · · · represents the contribution with a γ5 in the trace which produces a
term proportional to (~pe × ~pν̄)j . It is relevant for CP violation, but not the
parity violation we are interested here.

Keeping the terms in the amplitude square that knows the neutron spin, we
have

|M|2 ' 32G2
Fmpχ

†
s [Ee~σ · ~pν̄ + Eν̄~σ · ~pe]χs + (spin independent terms) .

(263)

Clearly, the ~σ ·~pe term makes a different for electron traveling along or opposite
to the neutron spin direction. Recall that |M|2 contributes to the differential
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decay rate with respect to the angular variables, e.g., dΓ/d cos θ(~pe, ~sn) ∝ |M|2.
The presence of ~σ ·~p terms clearly indicate parity violation, because under parity
transformation 3-momentum ~p is odd whereas spin ~sn = 〈~σ/2〉 stays invariant.

Looking back, had the weak interaction preserved parity, and the above
calculation are repeated without PL, we would get

ūnγ
µγ0γνun = χ†s(σ

µ + σ̄µ)(σν + σ̄ν)χs = 4χ†sχsδ
µ
0 δ
ν
0 . (264)

No information about the neutron spin will be left over.
Evidence for parity violation in weak interactions was first discovered ex-

perimentally using the beta decay of cobalt-60 in the Wu experiment, where it
was found that the most of the emitted electrons favored a direction opposite to
that of the nuclear spin. https://en.wikipedia.org/wiki/Wu_experiment

A similar idea has also been applied to measure the polarization of the top
quark experimentally, using the charged leptons in its decay final states.

53

https://en.wikipedia.org/wiki/Wu_experiment


4 Particle Collisions

4.1 Mandelstam variables

In this subsection and next, we focus on 2→ 2 scattering processes, represented
by the diagram below.

p_1

p_2

p_3

p_4

The squared scattering amplitude of any process |M|2(p1, p2, p3, p4) depends
on the initial and final state momenta but is a Lorentz scalar, thus it must
depend on the scalar products on these momenta. Using energy-momentum
conservation, p4 = p1 + p2 − p3. With the three independent momenta, we
can simply square each of them which gives particle masses. Nontrivial scalar
products occur between different momenta, p1 · p2, p1 · p3, p2 · p3. They can be
reorganized to define the Mandelstam kinematic variables

s ≡ (p1 + p2)2 = m2
1 +m2

2 + 2p1 · p2 ,

t ≡ (p1 − p3)2 = m2
1 +m2

3 − 2p1 · p3 ,

u ≡ (p2 − p3)2 = m2
2 +m2

3 − 2p2 · p3 .

(265)

By noting that

s+ t+ u = 2m2
1 + 2m2

2 + 2m2
3 + 2(p1 · p2 − p1 · p3 − p2 · p3) ,

p2
4 = m2

4 = (p1 + p2 − p3)2 = m2
1 +m2

2 +m2
3 + 2(p1 · p2 − p1 · p3 − p2 · p3) ,

⇒ s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 ,

(266)

we conclude that only two are independent among the s, t, u variables. The
amplitude square is often written as a function of s and t.

In practice, in calculations we often work in the center-of-mass (CM) frame.
Recall the cross section defined in Eq. (206) is Lorentz invariant. In this case,
we have ~p1cm = −~p2cm, and s = (E1cm + E2cm)2. We can also derive

|~p1cm| = |~p2cm| =
1

2
√
s

√
(s− (m1 +m2)2) (s− (m1 −m2)2) ,

E1cm =
s+m2

1 −m2
2

2
√
s

, E2cm =
s+m2

2 −m2
1

2
√
s

.

(267)

Similarly, we can find |~p3cm|, |~p4cm|, E3cm, E4cm with the replacement 1, 2→ 3, 4
in the above equation.
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In the CM frame, the t variable has a one-to-one correspondance to the
scattering angle

t = m2
1 +m2

3 − 2E1cmE3cm + 2|~p1cm||~p3cm| cos θ . (268)

The allowed range of t can then be worked out for 0 ≤ θ ≤ π. In high energy
collision processes, we often deals with ultra-relativistic initial and final state
particles. In the limit where all masses are negligible, it is straightforward to
check that

− s ≤ t ≤ 0. (269)

t is always negative, and so is u.
Finally, the total cross section can be obtained by integrating over the final

state phase space, including the scattering angle, or t. As a result, it is only a
function of s,

σ(s) . (270)

In general, the interaction cross section is different from the geometric cross
section. For a fundamental particle, the latter is related to its de Broglie or
Compton wavelength.

All discussions in this subsection are model independent.

4.2 Lepton colliders

We first consider lepton collider physics, where e+e− annihilate onto fermion-
anti-fermion pair, denoted by ff̄ . Depending on the identity of f , there are
three classes of possible Feynman diagrams.

1) For f 6= e or νe, the annihilation occurs only via s-channel photon and
Z-boson exchange. (My time always goes from left to right.)

e−

e+

f

f
_

2) For f = e, the annihilation can also occur via t-channel photon and
Z-boson exchange, in addition to the s-channel.

e−

e+

e−

e+

e− e−

e+ e+

3) For f = νe, the annihilation can also occur via t-channel W -boson ex-
change, in addition to the s-channel photon and Z-boson exchange.
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e−

e+

e−

e+

W

_
_

In general, all diagrams contribute coherently at the scattering amplitude
level, and they can interfere with each other.

For the rest of this subsection, we will consider f is the muon or quarks. In
this case, only the s-channel photon and Z diagrams contribute. The scattering
amplitude is

iM = (ie)2Qf [v̄(p2, s2)γµu(p1, s1)]
−igµν
s

[ū(p3, s3)γνv(p4, s4)]

+ (igZ)2[v̄(p2, s2)γµ(geLPL + geRPR)u(p1, s1)]
i
(
−gµν +

(p1+p2)µ(p1+p2)ν
M2
Z

)
s−M2

Z

× [ū(p3, s3)γν(gfLPL + gfRPR)v(p4, s4)]

=
ie2Qf
s

[v̄(p2, s2)γµu(p1, s1)][ū(p3, s3)γµv(p4, s4)]

+
ig2
Z

s−M2
Z

[v̄(p2, s2)γµ(geLPL + geRPR)u(p1, s1)][ū(p3, s3)γµ(gfLPL + gfRPR)v(p4, s4)] ,

(271)

where in the second step, we applied the equations of motion for the electron
and muon spinors and neglected terms suppressed by memν/M

2
Z (similar to

what we did in the muon decay exercise). Using Eq. (180), the Z couplings are
gZ = g2/ cos θW , gL = T3L −Q sin2 sin2 θW , and gR = −Q sin2 sin2 θW .

Next, we will consider special energy ranges of the scattering where only one
of the two amplitudes dominates the scattering process.

4.2.1 e+e− annihilation at low energies

We first consider the CM energy of scattering in the regime me,mµ,mq � s�
M2
Z . This allows us to drop all light fermion masses in the initial and final

states, and drop the terms inversely proportional to the Z-boson mass. Indeed,
comparing the prefactors in the two terms of Eq. (271), we find

e2Qf
s
� g2

Z

M2
Z

. (272)

This suggests that the photon exchange contribution dominates over that of Z
exchange. The leading amplitude can be approximated as

iM =
ie2Qf
s

[v̄(p2, s2)γµu(p1, s1)][ū(p3, s3)γµv(p4, s4)] . (273)
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The corresponding squared amplitude for unpolarized electron and position
beams is

|M|2 =
1

4

e4Q2
f

s2
Tr[�p2γ

µ
�p1γ

ν ]Tr[�p3γ
µ
�p4γ

ν ]

=
8e4Q2

f

s2
[(p2 · p3)(p1 · p4) + (p1 · p3)(p2 · p4)]

=
2e4Q2

f

s2
(u2 + t2)

'
2e4Q2

f

s2

[
(s+ t)2 + t2

]
.

(274)

In the last step, we used the relation s+ t+ u ≈ 0 here.
The differential cross section is

dσ

dt
=

1

64πs

1

|~p1cm|2
|M|2 , (275)

where |~p1cm| is given by Eq. (267). and the general range of t is

tmax
min =

(
m2

1 −m2
2 −m2

3 +m2
4

2
√
s

)2

− (|~p1cm| ∓ |~p3cm|)2
. (276)

Here for massless fermions, we have |~p1cm| =
√
s/2, and −s ≤ t ≤ 0. The

integral can be readily done,

σ
(γ exchange)

e+e−→ff̄ (s) =
4πα2Q2

fNc

3s
, (277)

where the color factor Nc = 1 for f = µ, and Nc = 3 for f = quarks.
For e+e− collider running at CM energy

√
s, the annihilation will produce

all light fermions with mass mf <
√
s/2. It is useful to define an observable

called the R factor, as the ratio between two cross sections. The hadronic R
factor is defined as

RH(s) =
∑

light q

σ
(γ exchange)
e+e−→qq̄ (s)

σ
(γ exchange)
e+e−→µ+µ−(s)

=
∑

light q

3Q2
f , (278)

For B factory experiments (BaBar, Belle, Belle-II) that runs above twice
of the bottom quark mass, light quark includes u, d, s, c, b, and RH = 3. For
τ -charm factory experiments (BES) that runs above twice of the charm quark
mass, light quark includes u, d, s, c, and RH = 8/3. For experiments running
at GeV .

√
s < 2mc, we have RH = 2. For experiments with

√
s . GeV, the

above rule breaks down because we are entering the mesonland of low energy
QCD. In this case, resonance are expected when

√
s equals mass of a meson.

The following plot is stolen from the textbook by Burgess and Moore, which
displays the experimentally measured values of RH as a function of

√
s.
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Verifying the above predicted value of RH also provides a measurement of
the number of colors in QCD, Nc = 3.

4.2.2 e+e− annihilation near the Z-pole

Next, we consider another special energy regime of e+e− collision with
√
s ∼

MZ , i.e., the lepton collider runs at energies that scans the Z-pole. Again, we
comparing the prefactors in the two terms of Eq. (271) and find

e2Qf
s
�
∣∣∣∣ g2

Z

s−M2
Z

∣∣∣∣ . (279)

for |
√
s −MZ | � MZ . This suggests that the Z-boson exchange contribution

dominates over that of photon exchange.
The way to regularize the scattering amplitude when

√
s = MZ is to include

the decay with of Z boson in the propagator,

1

s−M2
Z

→ 1

s−M2
Z + iMZΓZ

, (280)

where ΓZ = 2.4 GeV is the total decay width of the Z boson. Because ΓZ �MZ ,
Eq. (279) still holds after the above replacement.

The squared scattering amplitude near Z pole is

|M|2 =
g4
Z

4

1

(s−M2
Z)2 +M2

ZΓ2
Z

Tr[�p2γ
µ(geLPL + geRPR)��p1γ

ν(geLPL + geRPR)]

× Tr[�p3γµ(gfLPL + gfRPR)�p4γν(gfLPL + gfRPR)]

=
g4
Z

4

1

(s−M2
Z)2 +M2

ZΓ2
Z

{
g2
eLTr[�p2γ

µ
�p1γ

νPL] + g2
eRTr[�p2γ

µ
�p1γ

νPR]
}

×
{
g2
fLTr[�p3γµ�p4γνPL] + g2

fRTr[�p3γµ�p4γνPR]
}

=
g4
Z

2

1

(s−M2
Z)2 +M2

ZΓ2
Z

[
(g2
eL + g2

eR)(g2
fL + g2

fR)(u2 + t2) + (g2
eL − g2

eR)(g2
fL − g2

fR)(u2 − t2)
]
.

(281)
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In the last step, we have expressed the momentum scalar products as the Man-
delstam variables.

The unpolarized cross section is

σe+e−→ff̄ (s) =
1

64πs

1

|~p1cm|2

∫ 0

−s
dt|M|2

=
Ncg

4
Z(g2

eL + g2
eR)(g2

fL + g2
fR)

48π

s

(s−M2
Z)2 +M2

ZΓ2
Z

,

(282)

where we used g4
Z = 32G2

FM
4
Z , and

∫ 0

−s dt(t
2 + u2) = 2

3s
3,
∫ 0

−s dt(t
2 − u2) = 0.

In the picture below, we plot the cross section as a function of the CM energy√
s. The peak around MZ is called the Breit-Wigner resonance.

86 88 90 92 94 96 98

s (GeV)

σ
e+
e-

f
f_

By scanning the e+e− collider energy over a wide range, a number of reso-
nances have been discovered in the Standard Model, including Z, Υ, J/ψ, ρ, ω,
etc. Some of them are very narrow (small decay width).

4.2.3 Narrow width approximation

A very useful approximation often made in collider physics analysis is the narrow
width approximation. It works well when the total decay width of a particle is
much smaller compared to its mass.
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The following quantity has the asymptotic form as the Dirac-δ function,

lim
ΓZ→0

1

(s−M2
Z)2 +M2

ZΓ2
Z

=
π

MZΓZ
δ(s−M2

Z) . (283)

In the narrow limit, the e+e− → ff̄ cross section can be written as

σe+e−→ff̄ =
Ncg

4
Z(g2

eL + g2
eR)(g2

fL + g2
fR)MZ

48ΓZ
δ(s−M2

Z) . (284)

Let us recall the unpolarized Z → ff̄ partial decay width calculated in
Eq. (216). In the mf = 0 limit,

ΓZ→ff̄ '
Ncg

2
ZMZ

24π
(g2
L + g2

R) , (285)

where we used the relation gL,R = gV ∓ gA, thus g2
fL + g2

fR = 2(g2
fV + g2

fA).
This allows us to write

σe+e−→ff̄ =
12π2ΓZ→e+e−ΓZ→ff̄

MZΓZ
δ(s−M2

Z) . (286)

Recall that the ratio ΓZ→ff̄/ΓZ is nothing but the branching ratio for Z

decaying into ff̄ . Thus, the above cross section σe+e−→ff̄ factorizes into two
parts, the production cross section of e+e− → Z, and the branching ratio for Z
to decay into a particular ff̄ final state, where

σe+e−→Z =
12π2ΓZ→e+e−

MZ
δ(s−M2

Z) . (287)

The prefactor we got here is consistent with the famous lecture notes by Tao
Han, https://arxiv.org/pdf/hep-ph/0508097.pdf. This cross section can
also be verified by directly calculating the 2 → 1 annihilation cross section.
Crossing symmetry of the S matrix tells that

|M|2e+e−→Z = |M|2Z→e+e− , (288)

which holds without initial state spin average. Using Eq. (213), we get

|M|2e+e−→Z = 2g2
Z(g2

eL + g2
eR)M2

Z . (289)

Averaging over the initial state spin and feed this to the general cross section
formula, Eq. (206),

σe+e−→Z =
1

4f

∫
dΠf (2π)4δ4(p1 + p2 −

∑
f

pf )|M|2e+e−→Z

=
1

2s

1

(2π)32MZ
(2π)4δ(

√
s−MZ)

1

4
2g2
Z(g2

eL + g2
eR)M2

Z

=
πg2

Z(g2
eL + g2

eR)

4MZ
δ(
√
s−MZ)

=
πg2

Z(g2
eL + g2

eR)

2
δ(s−M2

Z) =
12π2ΓZ→e+e−

MZ
δ(s−M2

Z) .

(290)

60

https://arxiv.org/pdf/hep-ph/0508097.pdf


In the last step we used Eq. (285).
The “parton” level cross section of the form Eq. (287) will be extremely useful

with evaluating the total cross sections by including the parton distribution
functions.

4.2.4 Z-pole observables

The most obvious Z-pole observables are the mass and width of the Z boson,
which can be obtained by studying σe+e−→ff̄ as a function of

√
s (see the figure

two pages ago). In addition, the overall Z production rate and its branching
ratio are also sensitive to combinations of gZ , sin2 θW , as well as the SU(2)L ×
U(1)Y quantum numbers of various fermions.

In this subsection, we point out Z-pole observables that allow us to mea-
sure sin2 θW alone. They are the asymmetries of final state distributions or
asymmetries due to different choices of polarized e+e− beams.

Forward-backward asymmetry

Let’s consider a concrete process e+e− → µ+mu− that occurs around the Z pole.
From Eq. (269), it has been understood that for scattering angle θ taking values
between 0 and π, the Mandelstam variable t ranges from −s to 0. This time, we
do the final state phase integral Eq. (282) more carefully, but dividing the range
of scattering angle into two regions 0 ≤ θ ≤ π/2, and π/2 ≤ θ ≤ π. They define
the forward and backward directions for the final state µ− to travel with respect
to the initial e− beam. The corresponding ranges of t are −s/2 ≤ t ≤ 0 and
−s ≤ t ≤ −s/2, respectively. With these, we define and forward and backward
parts of the cross sections as

σ+ =
1

64πs

1

|~p1cm|2

∫ 0

−s/2
dt|M|2 ,

σ− =
1

64πs

1

|~p1cm|2

∫ −s/2
−s

dt|M|2 ,
(291)

where |M|2 is given by Eq. (281). With them, we can define the forward-
backward asymmetry for e+e− → ff̄ at the Z-pole

AfFB =
σ+ − σ−
σ+ + σ−

. (292)

In practice, the measurement can be best done for µ+µ− final states, where the
electron charge of muons can be easily measured.

The relevant integrals can be done by using∫ 0

−s/2
dt(u2 + t2) =

1

3
s3 ,

∫ 0

−s/2
dt(u2 − t2) =

1

4
s3 ,∫ −s/2

−s
dt(u2 + t2) =

1

3
s3 ,

∫ −s/2
−s

dt(u2 − t2) = −1

4
s3 .

(293)
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They lead to

AfFB =
3

4

(g2
eL − g2

eR)(g2
fL − g2

fR)

(g2
eL + g2

eR)(g2
fL + g2

fR)
. (294)

It is remarkable to notice that AfFB only depends on the weak mixing angle
θW . Indeed, taking e+e− → µ+µ− as example, we have

geL = gµL = −1

2
+ sin2 θW , geR = gµR = sin2 θW . (295)

The measurement of the forward-backward asymmetry provides a direct probe
of the weak mixing angle as a fundamental parameter of the Standard Model.
The value of sin2 θW has been measured at the Z-pole to be 0.23.

Left-right asymmetry

Next, we consider the case of polarized electron-positron beams. Introduced
polarized cross sections near the Z-pole,

σe−Le
+
R→µ+µ− =

Ncg
4
Zg

2
eL(g2

µL + g2
µR)

48π

s

(s−M2
Z)2 +M2

ZΓ2
Z

,

σe−Re
+
L→µ+µ− =

Ncg
4
Zg

2
eR(g2

µL + g2
µR)

48π

s

(s−M2
Z)2 +M2

ZΓ2
Z

.

(296)

Here we are able to write down the cross sections directly without redoing
the calculation with polarized electron helicity states, because we can read the
contributions from e−Le

+
R and e−Re

+
L in the total cross section Eq. (282). The

cross sections for other beam combinations e−Le
+
L , e−Re

+
R must occur through the

insertion of the small electron mass and are suppressed.
The left-right asymmetry is defined as

AfLR =
σe−Le

+
R→µ+µ− − σe−Re+L→µ+µ−

σe−L e
+
R→µ+µ− + σe−Re

+
L→µ+µ−

=
g2
eL − g2

eR

g2
eL + g2

eR

. (297)

Clearly, it is also a function of sin2 θW . Polarized electron-positron beams pro-
vides an independent measurement of sin2 θW using AfLR, which can be cross

checked against the result from AfFB.

4.2.5 Testing the electroweak theory

Here we briefly tests of the electroweak theory. The input parameters of the
Standard Model related to electroweak symmetry breaking and the Higgs mech-
anism are

g1 , g2 , v . (298)

They can be reorganized into 3 independent parameters that are more widely
used parameters

α =
1

4π

(g1g2)2

g2
1 + g2

2

, GF =

√
2g2

2

8M2
W

=
1√
2v2

, sin2 θW =
g2

1

g2
1 + g2

2

. (299)
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The fine-structure constant α is most precisely measured in g − 2 and atomic
physics experiments. The Fermi constant is most precisely measured in the weak
decay rate of the muon. As just discussed in the previous subsection, sin2 θW
can be measured using asymmetry observables at the Z pole.

In addition, there are many other observables that are sensitive to combina-
tion of the above parameters, such as the Z,W boson masses and decay widths,
production cross sections in e+e− collisions, and the R factor discussed earlier.
Clearly, there are more observables than the number of input parameters. The
problem is over constrained, which in turn provide consistency tests of Standard
Model predictions. Remarkably, the Standard Model has passed all these tests
so far. The SU(2) × U(1) gauge theory that unifies the electromagnetic and
weak interactions is extremely successful.

The above arguments are based on tree level considerations. In fact, the
LEP experiment has tested these observables to per mille level, sensitive even
to one-loop radiative corrections. At loop level, additional input parameters
are involved, including the masses of the top quark and Higgs boson. Preci-
sion tests of the Standard Model can also provide an indirect measurement of
these parameters. Below is a nice plot illustrating the interplay among various
measurements, taken from https://arxiv.org/pdf/1908.07327.pdf.

4.3 Sudakov

Up to now in this section, we have only discussed 2 → 2 processes. In this
subsection, we take one step further and consider e+e− → qq̄ + γ. Naively, one
would expect that radiating an extra photon involves an extra factor of e at
amplitude level, and in turn an extra factor of α/π ∼ 1/400 at cross section
level, which makes it very suppressed compared to e+e− → qq̄. As we will see,
such a naive estimate is not always true.

In particular, we consider the photon to be radiated from the initial state,
and moreover, the photon is soft and collinear with respect to one of the beams.
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With the momentum assignment in the Feynman diagrams below, this corre-
sponds to k � p1,2, and ~k//~p1 or ~p2.

e+

e−

q

qbar

p2

p1

k

p1−k

e+

e−

q

qbar

p2

p1

k

p2−k

For the left diagram, let’s only write down the e− part of the diagram that
connects to the schannel γ, Z which includes the propagator

i

�p1 − �k −me

(−ieγµ)u(p1, s1)ελ∗µ (k)

= eελ∗µ (k) �p1 − �k +me

(p1 − k1)2 −m2
e

γµu(p1, s1)

= eελ∗µ (k)
2pµ1 − γµ�p1 − �kγ

µ + γµme

(p1 − k1)2 −m2
e

u(p1, s1)

= eελ∗µ (k)
2pµ1 − �kγ

µ

−2p1 · k
u(p1, s1) ,

(300)

where in the second step we interchange the position of �p1 and γµ, and in the last
step, we used equation of motion (�p1−me)u(p1, s1) = 0 and on-shell conditions
p2

1 = m2
e, k

2 = 0.
Next, we apply the soft photon assumption and drop the �kγ

µ terms in the
numerator. This leads to

− ep1 · ελ∗(k)

p1 · k
u(p1, s1) . (301)

We can similarly work out the right diagram with the soft photon radiated
from the e+ beam. This amounts to multiply the corresponding spinor with a
similar factor

ep2 · ελ∗(k)

p2 · k
v̄(p2, s2) . (302)

Because the factors in front of u(p1, s1) or v(p2, s2) contain no γ matrices,
they are simplify a multiplication factors. We can merge the two spinors with
the rest part of the scattering amplitudes, and discover the following

Me+e−→qq̄γ 'Me+e−→qq̄ × e
(
p2 · ελ∗(k)

p2 · k
− p1 · ελ∗(k)

p1 · k

)
, (303)

which holds for k � p1,2. The terms in the bracket are famously known as the
soft photon factorization.
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To calculate the total cross section, we square the amplitude and average
(sum) over initial (final) state spins and colours, and then integrate over the
3-body final state phase space.

σe+e−→qq̄γ '
1

4f

∫
d3~k

(2π)32Ek

d3~p3

(2π)32E3

d3~p4

(2π)32E4
(2π)4δ4(p1 + p2 − p3 − p4 − k)

× |Me+e−→qq̄|2 × e2
∑
λ

∣∣∣∣p2 · ελ∗

p2 · k
− p1 · ελ∗

p1 · k

∣∣∣∣2
' 1

4f

∫
d3~p3

(2π)32E3

d3~p4

(2π)32E4
(2π)4δ4(p1 + p2 − p3 − p4)|Me+e−→qq̄|2

× e2

∫
d3~k

(2π)32Ek

∑
λ

∣∣∣∣p2 · ελ∗

p2 · k
− p1 · ελ∗

p1 · k

∣∣∣∣2

= σLO
e+e−→qq̄ × e

2

∫
soft

d3~k

(2π)32Ek

∑
λ

∣∣∣∣p2 · ελ∗

p2 · k
− p1 · ελ∗

p1 · k

∣∣∣∣2 .

(304)

In the second step, we eliminate k from the δ functions, and restrict the k integral
to the soft regime (to be quantified). As a result the first line asymptotes to
the leading order e+e− → qq̄ cross section. To evaluate the cross section for
2→ 3 process with very soft photon radiated from the initial states, we simply
only need to know the 2→ 2 cross section and complete the extra multiplicative
factor in the last line of Eq. (304).

Employing the photon polarization sum formula presented in Eq. (84), the
multiplicative factor can be written as

X1 = e2

∫
soft

d3~k

(2π)32Ek

∑
λ

∣∣∣∣p2 · ελ∗

p2 · k
− p1 · ελ∗

p1 · k

∣∣∣∣2
= −e2

∫
soft

d3~k

(2π)32Ek

(
pµ2
p2 · k

− pµ1
p1 · k

)(
p2µ

p2 · k
− p1µ

p1 · k

)
' 2e2

∫
soft

d3~k

(2π)32Ek

p1 · p2

(p1 · k)(p2 · k)

=
e2

4π2

∫
soft

EkdEk

∫ 1

−1

d cos θ
p1 · p2

(p1 · k)(p2 · k)

=
e2s

8π2

∫
soft

EkdEk

∫ 1

−1

d cos θ
1

(p1 · k)(p2 · k)
,

(305)

where we neglected terms proportional to m2
e in the third step. In the next to

last step, we have chosen ~p1 to be along the ẑ axis, and θ is the polar angle of
radiated photon direction. Working in the CM frame, we have used ~p1 = −~p2

and p1 · p2 = s/2. Clearly, the above integrand goes to infinity in the limit

Ek → 0 (thus kµ = (Ek,~k)→ 0 in every component for on-shell photon). This
is the soft divergence.
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Next, we use the other feature of the radiation photon – its collinearity with
respect to either of the beam. We first make the argument in the massless elec-
tron limit. The above integrand has another way to be divergent with particular
choices of the θ. If θ = 0, we have kµ = zpµ1 where z is a small number, thus
k ·p1 = 0. If θ = π, we have kµ = zpµ2 where z is a small number, thus k ·p2 = 0.
These are called collinear divergences.

In practice, the collinear divergences can be regularized with a non-zero
electron mass. Near θ = 0, we have

p1 · k = E1Ek − ~p1 · ~k = E1Ek −
√
E2

1 −m2
eEk cos θ ' E1Ek

(
m2
e

2E2
1

+ 1− cos θ

)
,

p2 · k ' 2E2Ek .

(306)

Near θ = π, we have

p1 · k = 2E1Ek ,

p2 · k = E2Ek − ~p2 · ~k = E2Ek −
√
E2

2 −m2
eEk cos(π − θ) ' E2Ek

(
m2
e

2E2
2

+ 1 + cos θ

)
.

(307)

With this knowledge, we restrict the evaluation of X1 factor defined in
Eq. (305) in the regime where photon is both soft and collinear,

X1 = e2

∫
soft&collinear

d3~k

(2π)32Ek

∑
λ

∣∣∣∣p2 · ελ∗

p2 · k
− p1 · ελ∗

p1 · k

∣∣∣∣2
=
e2s

8π2

∫
soft

EkdEk

[∫
θ'0

d cos θ
1

(p1 · k)(p2 · k)
+

∫
θ'π

d cos θ
1

(p1 · k)(p2 · k)

]

=
e2

4π2

∫
soft

dEk
Ek

∫
θ'0

d cos θ
1

m2
e

2E2
1

+ 1− cos θ
+

∫
θ'π

d cos θ
1

m2
e

2E2
2

+ 1 + cos θ


=

e2

2π2
log

Emax
k

µ

[
log

s

m2
e

+O(1)

]
,

(308)

where we used E1 = E2 '
√
s/2 for

√
s � me. In the last line, the first

logarithmic factor comes from the Ek integral, where we introduce the fictitious
photon mass µ to regularize it. The quantity Emax

k defines how soft a photon
needs to be in order to be considered soft. Experimentally, it can be identified as
the energy threshold for a detector, below which the photon cannot be identified
and recorded to the tapes. From now on, we will call Emax

k = Eth. The square
bracket comes from the θ integral. The order 1 factor depends how far the θ is
integrated away from 0 or π, and it is much smaller than the logarithmic factor.

To summarize, the soft-collinear photon radiation corresponds to a cross
section

σe+e−→qq̄γ '
α

π

(
log

E2
th

µ2

)(
log

s

m2
e

)
σLO
e+e−→qq̄ . (309)
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Compared to the 2→ 2 cross section, the suppression factor is not simply α/π,
but comes with two log enhancements. One of them is even divergent because
photon is massless.

Experimentally, if the final state photon is not measured, we would consider
e+e− → qq̄γ to be part of the e+e− → qq̄ process and add the two cross sections
up. But the new one is divergent. This is because we are still missing a class of
important Feynman diagrams at one loop level, as shown below.

The first diagram is the leading order 2→ 2 diagram. The remaining three
diagrams are loop corrections with virtual photon exchange among the initial
states. Their amplitude carry extra factor of e2/(16π2) compared to the leading
diagram. The interference terms between tree-level and loop level diagrams,
Re(MtreeM∗loop), contributes to the total cross section, and is of order α/π

compared to the leading contribution from |Mtree|2. Importantly, there are
also logarithmic factors. Without detailed computation (see Peskin Chapter
6.4), the 2→ 2 cross section after including one-loop corrections is

σone-loop
e+e−→qq̄ = X2σ

LO
e+e−→qq̄

X2 ' −
α

π

(
log

s

µ2

)(
log

s

m2
e

)
.

(310)

The “effective” next-to-leading order cross section for e+e− → qq̄ (which can
be used to compare with experimental data collected a detector with threshold
Eth) is

σNLO
e+e−→qq̄ = σLO

e+e−→qq̄ + σone-loop
e+e−→qq̄ + σe+e−→qq̄γ

= (1 +X1 +X2)σLO
e+e−→qq̄

'
[
1− α

π

(
log

s

E2
th

)(
log

s

m2
e

)]
σLO
e+e−→qq̄ .

(311)

Remarkable, adding X1 and X2 gives a finite result. The factor X = X1 + X2

is called the Sudakov double logarithm factor.
Even without talking about the detector threshold or any detector at all,

we still need to add up the real and virtual photon processes. The theoretical
reason is, when k is small, both the real photon and the loop photon are close
to on-shell. Its wavelength is very so large that after a photon is radiated from
the beam, one cannot tell whether it travels to infinity or gets absorbed back to
the beam. In the spirit of path integral, one has to include all the possible fate
of the photon. This is the fundamental reason for treating the real and virtual
photon processes on the same footing.
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In perturbative calculations, ressumation is a technique to sum up a class
(not all) of Feynman diagrams. We could perform a ressumation of multiple soft-
collinear photon radiations from the initial states, and include loop corrects to
the same order of α. This leads to

σresummed
e+e−→qq̄ = σLO

e+e−→qq̄

∞∑
n=0

Xn

n!
= eXσLO

e+e−→qq̄

= exp

[
−α
π

(
log

s

E2
th

)(
log

s

m2
e

)]
σLO
e+e−→qq̄ ,

(312)

where the factor n! arises because all the radiated photons are identical particles.
The exponential is the Sudakov factor.

You may have noticed that all the real and virtual photon processes consid-
ered above are from the initial states (beams). Other diagrams involve the final
state quarks do exist. However, they do not introduce any logarithmic factors,
and are simply suppressed by powers of α/π compared to leading order cross
section. We have neglected them.

The following plot are stolen from Fig. 6.10 of Burgess and Moore textbook.
It shows the comparison of leading order cross section for e+e− → hadronic
final states (dashed curve) and the next-to-leading order one (solid curve). The
center of mass energies are around the Z pole. Clearly, radiative correction
(dominated by the Sudakov factor) makes a ∼ −30% change from the leading
order result, and it is confirmed by experimental data.

Another interesting thing to notice is that radiative correction makes the
Breit-Wigner peak of Z boson asymmetric, due to the energy dependence in the
Sudakov factor.

In the above discussions, we considered QED processes of real photon ra-
diation. Similar results hold for QCD. If we work with hadron colliders with
quark-anti-quark initial states, there could be real gluon radiations as well. In
the latter case, the Sudakov factor is proportional to αs = g2

3/(4π) instead of α.
The corresponding radiative correction can play an even more significant role.

68



4.4 Parton distribution functions

In this section, we will continue to deal with singularities of real photons radia-
tion off an electron beam. This time we consider collinear photons that are not
necessarily soft. The photons are still lost to observation because they continue
to travel along the beam direction. Such a discussion will reveal an important
aspect of the electron beam, which is actually composite. There are nonzero
probabilities to find the electron carrying only a fraction (any value between 0
and 1) of the total beam energy. The same applies to finding the photon in the
beam as well.

To proceed, let us consider a general process where an electron beam is
injected and the electron can participate in a process e+X → Y , as shown by
the Feynman diagram in the left of the figure below. Here X could be another
beam or a fixed target, and Y represents the resulting set of final state particles.
If you want a concrete example, we could consider elastic e−µ− collision with
t-channel photon and Z boson exchanges. We denote the scattering amplitude
as MeX→Y (E), where E is the energy of the electron coming into the vertex
(gray blob). For convenience, we factorize out the electron’s spinor,

MeX→Y (E) = Au(p, s) , (313)

where A accounts for the rest part of the amplitude, and pµ = (E, ~p) is the four
momentum of the electron.

e(p  )

X

Y

e(p  )

X

Y

e(k  )

Next, we consider a real photon radiation off the incoming electron, carrying
momentum qµ. See the right diagram above. This results in an electron propa-
gator with momentum kµ = pµ − qµ. The amplitude for this eX → γY process
can be written as

MeX→γY (E) = A
i

�k −me

(−ieγµ)u(p, s)ελ∗µ (q)

= eA
�k +me

k2 −m2
e

γµu(p, s)ελ∗µ (q) .

(314)

Because we consider high energy electron scattering, the electron mass will be
dropped until the point where it is needed for regularizing momentum integrals.

Next, we take into account of the fact that the photon is very collinear with
the electron. At leading order

k2 ' 0 . (315)
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This implies that the internal electron is nearly on shell. It allows us to approx-
imately apply the spin sum relation for fermions

�k +me '
∑
s′

u(k, s′)ū(k, s′) , (316)

and rewrite the eX → γY as

MeX→γY (p) ' eA
∑
s′ u(k, s′)ū(k, s′)

k2
γµu(p, s)ελ∗µ (q) . (317)

We will see shortly why this is useful.
Consider a polarized electron beam where the electron is left-handed. Ne-

glecting the electron mass, a chirality eigenstate is also a helicity eigenstate,
thus chirality is preserved within the beam. Upon interactions, it is important
to note that QED is vector current interaction, which also preserves the elec-
tron chirality before and after the photon radiation. This fixes s′ = s, i.e., the
electron remains left-handed until its hard collision with X. As a result, the
eX → γY amplitude factorizes into two parts and rewrite the eX → γY as

MeLX→γY (E) '
[
Au(k, s)

] [ e
k2
ū(k, s)γµu(p, s)ελ∗µ (q)

]
=MeLX→Y (Ek)

1

k2
MeL→eLγ(p, q) .

(318)

The first factor is identified as the amplitude for eX → Y , define in Eq. (313),
but with incoming electron momentum equal to kµ.

The leads to a nice observation that the radiation of a collinear photon
simply amounts to factorization of the full amplitude into the hard scattering
part (eX → Y ) and the photon radiation part (e→ eγ).

We still need to evaluate remaining part of Eq. (318). To do so, we take
more care in writing down the four momenta, by allowing for a small transverse
component of the photon with respect to the incoming electron beam (not exact
collinear). While still considering the electron to be massless, we have

pµ ' (E, 0, 0, E) ,

qµ '
(
zE, p⊥, 0, zE −

p2
⊥

2zE

)
.

(319)

Here we introduce a small transverse momentum for the photon

me � p⊥ � E . (320)

The photon carries away a faction z ∈ (0, 1) of the beam energy. The photon’s
four momentum square q2 vanishes up to p4

⊥ order.
Momentum conservation implies that

kµ = pµ − qµ '
(

(1− z)E,−p⊥, 0, (1− z)E +
p2
⊥

2zE

)
. (321)
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As a result,

k2 ' −1

z
p2
⊥ , (322)

which fixes the denominator Eq. (318).
The remaining part to evaluate is the helicity amplitude MeL→eLγ(p, q),

where we must make use of the spinor representations that are helicity eigen-
states (see Eq. (58)). In particular, we have

u(p,+) =
√

2E


1
0
0
0



u(k,+) =
√

2(1− z)E


cos θ2

sin θ
2e
iφ

0
0

 '√2(1− z)E


1

− p⊥
2(1−z)E

0
0

 ,

(323)

where we have used tan θ ' − p⊥
(1−z)E � 1 and φ = 0, based on the form of kµ

in Eq. (321). We neglected kz which is much smaller than kx.
Using the γ matrix forms used throughout the lecture notes, Eq. (37), we

obtain
MeL→eLγ = e

√
2E
√

2(1− z)Eχ′†σµχελ∗µ (q) , (324)

where

χ =

(
1
0

)
, χ′ =

(
1

− p⊥
2(1−z)E

)
. (325)

The two polarizations vectors pf photon are

ε+1∗
µ (q) ' 1√

2

(
0, 1, i,− p⊥

zE

)
,

ε−1∗
µ (q) ' 1√

2

(
0, 1,−i,− p⊥

zE

)
.

(326)

Both satisfy q · ελ∗µ (q) = 0. Using (σx + iσy)χ = 0, we obtain

MeL→eLγ− = −ep⊥
√

2(1− z)
z

. (327)

The other one is slightly harder

MeL→eLγ+ = e
√

2E
√

2(1− z)E 1√
2

(
1 − p⊥

2(1−z)E

)(− p⊥
zE 0
2 p⊥

zE

)(
1
0

)
= −ep⊥

√
2(1− z)
z(1− z)

+O(p2
⊥) .

(328)

These lead to ∑
λ=±1

|MeL→eLγλ |2 =
2e2p2

⊥
z(1− z)

1 + (1− z)2

z
. (329)
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Because QED respects parity, we can derive the same result with a right-handed
polarized electron beam.∑

λ=±1

|MeR→eRγλ |2 =
2e2p2

⊥
z(1− z)

1 + (1− z)2

z
. (330)

We are now ready to write down the total cross section for eX → γY and
organize it in an elegant way. The unpolarized cross section is

σeX→γY =
1

4f

∫
Πfinal

∑
λ

|MeX→γλY |2(2π)4δ4(p+ pX − q − pY )

=
1

4f

∫
Πfinal

∑
λ

1

2

[
|MeLX→γλY |2 + |MeRX→γλY |2

]
(2π)4δ4(p+ pX − q − pY )

=
1

4f

∫
Πfinal

1

2k4

[
|MeLX→Y (Ek)|2

∑
λ

|MeL→eLγλ |2 + |MeRX→Y (Ek)|2
∑
λ

|MeR→eRγλ |2
]

× (2π)4δ4(p+ pX − q − pY )

=
1

4f

∫
Πfinal

1

2

[
|MeLX→Y (Ek)|2 + |MeRX→Y (Ek)|2

]
(2π)4δ4(k + pX − pY )

×
∫

d3~q

(2π)32Eq

1

k4

∑
λ

|MeL,R→eL,Rγλ |2 ,

(331)

where the prefactor is f =
√

(p · pX)2 −m2
em

2
X ' p ·pX = 1

1−zk ·pX . Let’s hold
the four momentum of the other beam pX fixed. In the last step of Eq. (331),
the first line is equal to

(1− z)σeX→Y
(
Ek
)
, Ek = (1− z)E . (332)

In the second line, the d3~q integral can be evaluated with using Eq. (319),

where qz = zE and q2
x+q2

y = p2
⊥. Thus

∫
dqz = E

∫
dz,
∫
dqxdqy =

∫ 2π

0
dφp⊥dp⊥ =

1
2

∫ 2π

0
dφdp2

⊥. And because qz � qx, qy, we have Eq ' qz = zE. Further using
Eqs. (329) and (330), we obtain∫

d3~q

(2π)32Eq

1

k4

∑
λ

|MeL,R→eL,Rγλ |2

=
1

16π2

∫ 1

0

dz

z

∫
dp2
⊥

1

k4

∑
λ

|MeL,R→eL,Rγλ |2

=
1

16π2

∫ 1

0

dz

z

∫
dp2
⊥
z2

p4
⊥

∑
λ

|MeL,R→eL,Rγλ |2

=
e2

8π2

∫ 1

0

dz
1 + (1− z)2

z(1− z)

∫
dp2
⊥

p2
⊥

.

(333)
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Putting Eqs. (332) and (333) together, we get

σeX→γY (E) ' e2

8π2

∫ 1

0

dz
1 + (1− z)2

z

∫
dp2
⊥

p2
⊥
σeX→Y

(
Ek
)
. (334)

The p⊥ integral is log divergent. It can be regularized by the nonzero electron
mass. We choose the upper limit to be Q =

√
−q2 > 0, referred to as the

resolution scale associated with the eX → Y hard scattering. Physically, Q
is the momentum transfer in the hard scattering, or transverse momenta pT
carried by the resulting final state particles measured by the detector. For a
given high-energy collider running at CM energy

√
s, the typical value of Q is

of same order as
√
s. That is why we build such a collider for. In contrast,

the initial state photon radiation considered above must be sufficiently collinear
and does not affect the observation of the hard scattering process. This sets an
upper bound on its transverse momentum p⊥, which is Q. Or maybe Q/10, but
the fudge factor of 10 is not important because it eventually appears in a log. 3

Otherwise, if the photon carries p⊥ higher than Q, we would consider it as part
of the hard scattering process, rather than the beam being composite.

It is useful to think about the above process from the point of view of the
electron (in its rest frame), where one can appreciate the hierarchy among the
scales (see Eq. (320)). In this frame, the photon still has transverse momentum
p⊥, and the corresponding wavelength is p−1

⊥ . It can probe where the electron is
within its Compton wavelength given by m−1

e , with a resolution given by p−1
⊥ .

In contrast, the eX hard scattering occurs at much shorter distances.

With the above picture, we complete the p⊥ integral with Q as upper bound
and use the electron mass to regularize the singularity near the lower bound∫

dp2
⊥

p2
⊥
' log

Q2

m2
e

. (335)

3More generally, one could keep the p⊥ dependence, and the resulting parton distribution
will depend on both x and p⊥. That is called the transverse momentum dependent PDF.
For more details and references, see https://en.wikipedia.org/wiki/Transverse_momentum_

distributions.
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The log divergence near p⊥ = 0 is regularized by the electron mass. Note Q
should always be much higher than me.

Defining x = 1− z, we finally obtain

σeX→γY '
α

2π
log

Q2

m2
e

∫ 1

0

dx
1 + x2

1− x
σeX→Y . (336)

The physical meaning of this formula is clear. With an electron beam with
energy E, there are probabilities for the electron out of the beam to participate
in hard scatterings with energy xE, with 0 ≤ x ≤ 1. The rest of beam energy
is carried away by a photon. The suggests that the beam is composite, and
electron is a parton of the beam.

The probability density for finding electron to carry energy fraction x from
the beam can be read from Eq. (336),

fe(x,Q
2) =

α

2π

(
log

Q2

m2
e

)
1 + x2

1− x
. (337)

However, there is still a subtlety in this expression when x = 1, we need to fix
the singularity. Moreover, the above fe(x,Q

2) is proportional to α, indicating
a photon must be radiated. It does not yet account for the possibility where
the beam electron does not radiate any photon at all, which is nothing but the
leading order eX → Y process. After including this contribution, Eq. (336) is
modified to

fe(x,Q
2) = δ(1− x) +

α

2π

(
log

Q2

m2
e

)[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
, (338)

where the 1/(1 − x)+ is the same as 1/(1 − x) for all values of 0 ≤ x < 1, but
regularizes the singularity when x ' 1. It takes the form

1

(1− x)+
= lim
ε→0

[
1

1− x
Θ(1− x− ε)− δ(1− x)

∫ 1

0

dx′
1

1− x′

]
, (339)

where Θ is the step function. This implies∫ 1

0

dx
g(x)

(1− x)+
=

∫ 1

0

dx
g(x)− g(1)

1− x
, (340)

for any real function g(x). For the first term in the square bracket, we have∫ 1

0

dx
1 + x2

(1− x)+
=

∫ 1

0

dx
(1 + x2)− 2

1− x
= −3

2
, (341)

As a result, the integral over x vanishes for the second term in Eq. (338).
Eq. (338) is the electron parton distribution function (PDF) in an electron
beam, valid up to the first of order in α. It satisfies the unitarity condition∫ 1

0

dxfe(x,Q
2) = 1 . (342)
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The total probability of finding an electron as a parton of an electron beam
(minus that of finding a positron) where the parton carries all possible fractions
of beam energy must be 1.

To simplify the notation, we introduce the splitting function

Pe←e(x) =
1 + x2

(1− x)+
+

3

2
δ(1− x) . (343)

With this, the electron PDF can be written as

fe(x,Q
2) = δ(1− x) +

α

2π

(
log

Q2

m2
e

)
Pe←e(x) . (344)

With the electron PDF, we can define the inclusive eX → Y reaction cross
section in the beam electron experiment

σeX→Y+(0,1, . . . γ) =

∫ 1

0

dxfe(x,Q
2)σeX→Y . (345)

To include more than one photon in the final state, the PDF needs to be calcu-
lated beyond the first order in α. It is worth noting that both σeX→Y+(0 or 1 γ)

and σeX→Y share the same argument Q2, the resolution scale that the hard
scattering vertex is probing.

Plugging Eq. (344) into Eq. (345), we obtain

σeX→Y+(0,1, . . . γ) = σeX→Y +
α

2π

(
log

Q2

m2
e

)∫ 1

0

dxPe←e(x)σeX→Y +O(α2) .

(346)
Term by term, it corresponds to the following series of Feynman diagrams. Here,
all radiated photons are collinear.

X

Y

ee

X

Y

e

X

Y

.

.

.

LO

An electron beam also contains photon as a parton, and the corresponding
parton distribution function is (can be read from Eq. (334))

fγ(z,Q2) =
α

2π
log

Q2

m2
e

Pγ←e , Pγ←e =
1 + (1− z)2

z
. (347)

where Pγ←e is another splitting function. For an electron beam, fγ(z,Q2) must
occur at least at O(α) level. There is no need to regularize the singularity near
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z = 0 because for the photon (as a parton) to participate in hard scattering
processes, it must still carry a substantial amount of the original beam energy.

If we prepare a photon beam experimentally, it also contains electron and
position as its parton. We will not present the derivation of the corresponding
PDFs, but refer to Peskin Chapter 17.5 for further details.

4.4.1 Parton evolution

The parton distribution functions defined in Eqs. (338) and (347) depend on
two arguments, the fraction of beam energy x, and the transverse momentum
Q. In this subsection, we explore the Q dependence in more detail and derive a
differential equation that can relate PDF at various Q energy scales.

In particular, we consider the following Feynman diagram that relates two
electron PDFs corresponding to two different Q, up to order α.

0<p_perp<Q

...

f_e(y, Q)e beam

Starting with an electron beam, after a number of photon radiations (all
with p⊥ < Q), we reach an electron PDF denoted by fe(y,Q). On top of it,
consider one more photon is radiated (the blue one), with Q < p⊥ < Q + ∆Q,
and the resulting electron PDF is fe(x,Q + ∆Q). Here, x must be smaller
than y due to extra photon radiation. Because the last photon has the highest
energy, it occurs at a shorter distance than all the other photons. This explains
why we put it the closest to the hard-scattering vertex with momentum transfer
Q+ ∆Q.

After all the photon radiations, the resulting electron with energy carries
energy fraction x out of the energy E from the original e beam (on the left).
Effectively, we can also consider the electron before the last photon radiation as
an “intermediate beam” with energy yE, and the electron after the last photon
radiation as the parton of this intermediate beam with energy fraction x/y.

At leading order, the difference between fe(x,Q+ ∆Q) and fe(x,Q) is due
to the radiation of the last photon with Q < p⊥ < Q + ∆Q. We could do a
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similar calculation similar to Eq. (334), and obtain

fe(x,Q+ ∆Q)− fe(x,Q) =

∫ 1

x

dyfe(y,Q)

[∫
dx′

α

2π

∫ Q+∆Q

Q

dp2
⊥

p2
⊥
Pe←e(x

′)

]
δ(x− yx′)

=
α

π
log

Q+ ∆Q

Q

∫ 1

x

dx′

x′
Pe←e(x

′)fe

( x
x′
, Q
)

∆Q→0−−−−→ α

π

∆Q

Q

∫ 1

x

dx′

x′
Pe←e(x

′)fe

( x
x′
, Q
)
.

(348)

In the first line, the square bracket is the probability of finding an electron
carrying energy fraction x′ = x/y from the intermediate “beam” with energy
yE. In the second line, we complete the y integral first using the δ function.
The resulting range of x′ integral is set such that the first argument in fe does
not exceed 1, i.e., x/x′ ≤ 1. The last step allows us to write down a differential
equation for fe in the ∆Q→ 0 limit,

dfe(x,Q)

d logQ
=
α

π

∫ 1

x

dx′

x′
Pe←e(x

′)fe

( x
x′
, Q
)
. (349)

This represents one of the DEGLAP equations. It is an integro-differential
equation.

For the case of QED, one might not feel very impressed about this. By
inserting Eq. (338) to the both sides of the DEGLAP equation and keeping
the leading term on the right (only the δ function from fe in the integrand),
we find it works trivially. This is indeed the case because QED is completely
perturbative, and we can derive a PDF from the first principle.

The DEGLAP equation is a lot more useful for the case of QCD, when we
consider quark/gluon PDFs out of a proton beam, which are no longer calculable
due to its non-perturbative nature. Thus, we are not able to derive anything
similar to Eq. (338) from first principle. Instead, the above DEGLAP equation
still holds (with the replacement α→ α3). What we could do is to first measure
the PDF experimentally at certain energy scale Q, and then use the DEGLAP
equation to extrapolate it another scale Q′, as along as the gauge coupling α3

is perturbative between the two scales.
This is exactly the state of art of high-energy collider physics. The PDFs of

proton can be measured in deep-inelastic scattering processes with Q ∼ a few
GeV (to be discussed in the next section). They are then extrapolated to high
scales (hundreds of GeV to several TeV) for estimating the production cross
sections of heavy particles at the LHC, using the DEGLAP equation.

The following picture illustrates the scale Q dependence in the proton PDFs.
A useful place to download the PDF data set that has Mathematica interface
is https://nnpdf.hepforge.org/old/html/mathematica.html.
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4.4.2 Proton beam: LHC cross sections

We have gained sufficient understanding of PDF to directly write down general
cross sections at LHC (proton-proton collider), where at the fundamental level
two partons scatter

σ(s) =
∑
A,B

∫
dxAdxBfA(xA)fB(xB)σ̂AB(xAxBs) , (350)

where A,B goes through quarks, antiquarks and gluons. s = (14 TeV)2 is the
CM energy square of two proton beams, and ŝ = (pA+pB)2 ' 2pA ·pB ' xAxBs
is the center-of-mass energy of two partons. This is a good approximation for
ŝ� GeV2 where the masses of proton and partons are all negligible.

The proton PDFs satisfy the following sum rules∫ 1

0

dx
[
fu(x,Q2)− fū(x,Q2)

]
= 2 ,∫ 1

0

dx
[
fd(x,Q

2)− fd̄(x,Q2)
]

= 1 ,∫ 1

0

dx
[
fq(x,Q

2)− fq̄(x,Q2)
]

= 0 , (q = s, c, b)

∑
A

∫ 1

0

dxxfA(x,Q2) = 1 .

(351)

The above general formation can be simplified for resonance production.
i.e., the 2 → 1 process discussed in sec. 4.2.3. Examples include gluon fusion
production of the Higgs boson, or qq̄ → Z production. Let’s work with the
latter process. Making analogy to Eq. (287), for qq̄ → Z, we have

σqq̄→Z =
1

9
× 12π2ΓZ→qq̄

MZ
δ(ŝ−M2

Z) =
4π2ΓZ→qq̄

3MZ
δ(ŝ−M2

Z) , (352)
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where the extra 1/9 comes from averaging the initial state quark, antiquark
color degrees of freedom. Plugging this into Eq. (350), we get

σpp→Z(s) =

∫
dxAdxB [fq(xA)fq̄(xB) + fq̄(xA)fq(xB)]

4π2ΓZ→qq̄
3MZ

δ(xAxBs−M2
Z)

=
4π2ΓZ→qq̄

3MZ

1

s

∫ 1

M2
Z/s

dxA
xA

[
fq(xA)fq̄

(
M2
Z/s

xA

)
+ fq̄(xA)fq

(
M2
Z/s

xA

)]
.

(353)

Here the scale factor in the PDF should be set to Q 'MZ .

4.5 Deep inelastic scattering

There are two ways of looking at the high energy collision processes discussed
earlier with the proton beam. What we have described is in the lab frame where
the proton sends out one of its partons to participate in a hard scattering with
the second beam. Because both cross sections and PDFs are Lorentz invariant
quantities, we can boost to be rest frame of the proton, and equivalently describe
the above process as using the second beam to probe the internal structure of
the proton, with momentum transfer Q. Using the uncertainty principle, Q−1

is the length scale that can be probed. Clearly, larger Q allows us to see the
internal structure of the proton better (see the picture below). That explains
why Q is called the resolution scale.

In this subsection, we consider fixed target experiments as the second way
of probing the internal structure of proton. The experiment has an electron
beam and at rest protons in the target material. We will discuss experimental
evidences showing that the parton picture indeed works for high energy colli-
sions. The PDFs can correctly describe the internal structure of proton in these
circumstances. These experiments also provides a valuable way of measuring
the PDFs.

The deep inelastic scattering process is illustrated by the following dia-
gram, where proton at rest is struck by an energetic electron beam. This
occurs through t-channel γ or Z exchange, where for the low-energy (

√
s ∼

few GeV) collision considered here, photon exchange dominates. After the col-
lision, the electron gets deflected whereas proton breaks apart into a bunch
of final state hadrons, denoted by X. The first experiment in this class is
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the SLAC-MIT experiment, https://www.nobelprize.org/prizes/physics/
1990/9594-the-slac-mit-experiment/.

p X

e e

k k’

q

p

4.5.1 Kinematics

First, let’s work out the kinematics of the scattering, by introducing two vari-
ables

x =
Q2

2p · q
,

ν =
2p · q
mp

,

(354)

where Q2 = −q2 > 0. x is a dimensionless quantity. ν carries unit of energy.
We work in the lab frame where the proton is at rest, pµ = (mp, 0, 0, 0). Using
momentum conservation q = k − k′, we find ν is related to the energy transfer
of the process,

ν = 2(Ek − Ek′) . (355)

On the other hand, the product of x and ν is related to the three-momentum
transfer (scattering angle) of the process,

Q2 = q2 = (k − k′)2 ' 2k · k′ = 2EkEk′(1− cos θ) . (356)

We could dig deeper on the meaning of x, by making connection with the
parton model. The parton model states that for each high energy collision
event, the electron only scatters with a parton inside the proton and does not
care about the rest parts of proton. Here to interact with the photon, the parton
must be a quark or antiquark. The parton can carry a fraction of the proton’s
four-momemtum, p̃µ = x̃pµ = (ξmp, 0, 0, 0). The probability density for this
to occur is given by the PDF fq(ξ,Q

2). Assuming the final state parton has
four-momemtum p̃′, we have

p̃′ = p̃+ q . (357)

Squaring both sides, we get

p̃′2 = p̃2 + q2 + 2p̃ · q . (358)
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Working in the limit where Q2 = −q2 � m2
p, we find

Q2 ' 2p̃ · q , ⇒ ξ =
Q2

2p · q
. (359)

Comparing with Eq. (354), we find

x = ξ . (360)

In other words, if the parton model works, the kinematic variable x would tell
the fraction of energy carried by the parton in the collision!

4.5.2 Testing the parton model

It is time to work out the differential cross section of the process. We first do it
without assuming the parton model. The matrix element is

iM = ū(k′)(−ieγµ)u(k)
−igµν
q2
〈X|(−ieJµ)|p〉 , (361)

where Jµ is made of quark vector current that sees the photon. Without the
possibility of knowing the detailed final state X, we cannot work out 〈X|Jµ|p〉
but try to proceed with this symbolic notation.

The spin averaged matrix element square is

|M|2 =
1

4

e4

q4
Tr
[
(�k
′ +me)γ

µ(�k +me)γ
ν
]
〈p|Jµ|X〉〈X|Jν |p〉

=
e4

q4
× Lµν × 1

2
〈p|Jµ|X〉〈X|Jν |p〉

(362)

where electron mass is neglected in the second step, and

Lµν = 2(kµk′ν + kνk′µ − k · k′gµν) . (363)

The inclusive ep→ eX cross section is

σep→eX =
1

4f

∫
d3~k′

(2π)32Ek′

∑
X

|M|2(2π)4δ4(p+ k − k′ − pX)

=
1

4f

∫
d3~k′

(2π)32Ek′

e4

q4
Lµν(4π)Wµν ,

(364)

where
∑
X includes the sum over all possible X final states and contains the

corresponding phase space integrals. In the last step we defined

Wµν =
1

4π

∑
X

1

2
〈p|Jµ|X〉〈X|Jν |p〉(2π)4δ4(p+ k − k′ − pX) . (365)

There will be enough integrals to kill all the δ functions.
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Before worrying about Wµν , we first simplify the electron final state phase
space integral, by introducing another kinematic variable

y =
q · p
k · p

=
q0

Ek
=
Ek − Ek′

Ek
. (366)

Again, we used pµ = (mp, 0, 0, 0). As a result, the k′ phase space integral can
be rewritten as∫

d3~k′

(2π)32Ek′
=

1

8π3

∫
dφ

∫
d cos θ

∫
k′2dk′

1

2Ek′

' 1

8π2

∫
d cos θ

∫
Ek′dEk′

=
1

8π2

mp

Ek

∫
dx

∫
(Ek − Ek′)d(Ek − Ek′)

=
1

8π2
mpEk

∫ 1

0

dx

∫ 1

0

ydy ,

(367)

where k′ = |~k′| and we work in the massless electron limit such that Ek′ = k′.
In the third step, we used

x =
Q2

2p · q
=
EkEk′(1− cos θ)

mp(Ek − Ek′)
, ⇒ d cos θ = −mp(Ek − Ek′)dx

EkEk′
. (368)

For the electron fixed target collision, we have 4f = 4Ekmp. As a result,

1

4f

∫
d3~k′

(2π)32Ek′
=

1

32π2

∫ 1

0

dx

∫ 1

0

ydy , (369)

and we can write the cross section as

σep→eX = 2πα2

∫ 1

0

dx

∫ 1

0

ydy
1

q4
LµνWµν . (370)

We could express Wµν in terms of form factors, keeping in mind that it is
a function of pµ and qµ. The Ward identity states that in QED photon must
always couple to a conserved current, thus qµWµν = 0. The general form of
Wµν is

Wµν =

(
−gµν +

qµqν
q2

)
F1(x,Q2)−

(
pµ
p · q

− qµ
q2

)(
pν
p · q

− qν
q2

)
(p ·q)F2(x,Q2) ,

(371)
where F1,2 are two dimensionless form factors (structure functions) characteriz-
ing the internal structure of proton. They must depend on the scalar products
made out of pµ and qµ. The non-trivial ones are p · q and q2, which are replaced
by x = Q2/(2p · q) and Q2 = −q2.
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The contraction between Lµν and Wµν can now be worked out in terms of
the form factors. Finally, we get

dσep→eX
dxydy

=
4πα2

q4

{
q2F1(x,Q2)−

[
(1− y)

q2

xy2
− xm2

p

]
F2(x,Q2)

}
. (372)

We could measure the two structure functions experimentally by exploring the
differential cross section.

Next, we work in the parton model and consider the scatterings of electron
with the fundamental partons inside the proton, which are quarks (u, d) and
anti-quarks (ū, d̄). We apply the master formula Eq. (353) (neglecting QED
corrections, only the proton beam is composite),

σep→eX =
∑
q

∫
dξ
[
fq(ξ,Q

2)σeq→eq + fq̄(ξ,Q
2)σeq̄→eq̄

]
, (373)

where the parton level cross sections σeq→eq and σeq̄→eq̄ are calculated assuming
the initial state parton carries four-momentum ξpµ = (ξmp, 0, 0, 0).

p
X

e e

k k’

q
l

It is straightforward to compute the 2→ 2 cross section for e(k) + q(ξp)→
e(k′) + q(`) (as shown by the above Feynman diagram),

σeq→eq =
1

4ξEkmp

∫
d3~k′

(2π)32Ek′

∫
d3~̀

(2π)32E`
(2π)4δ4(k + ξp− k′ − `)

e4Q2
q

q4
Lµν

× 2ξ(pµ`ν + pν`µ − p · `gµν)

=
1

4Ekmp

∫
d3~k′

(2π)32Ek′

1

2E`
(2π)δ(Ek − Ek′ + ξmp − E`)

e4Q2
q

q4
Lµν

× 2(pµ`ν + pν`µ − p · `gµν)

=
1

4Ekmp

∫
d3~k′

(2π)32Ek′
(2π)δ

(
E2
` − (Ek − Ek′ + ξmp)

2
) e4Q2

q

q4
Lµν

× 2(pµ`ν + pν`µ − p · `gµν) .

(374)

Because the final state parton is also on-shell, we have

E2
` = |~̀|2 +m2

q ' |~̀|2 = |~q + ξ~p|2 . (375)
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This allows us to rewrite the remaining δ function as

δ
(
|~q + ξ~p|2 − (q0 + ξmp)

2
)

= δ
(

(q + ξp)2
)

= δ
(
q2 + 2ξp · q + ξ2m2

p

)
' δ

(
q2 + 2ξp · q

)
=

1

2p · q
δ

(
ξ +

q2

2p · q

)
=
−x
q2
δ
(
ξ − x

)
.

(376)

Plugging this back to the above parton level cross section, we find

σeq→eq =
1

4Ekmp

∫
d3~k′

(2π)32Ek′

2πx

−q2
δ(ξ − x)

e4Q2
q

q4
Lµν2(pµ`ν + pν`µ − p · `gµν) .

(377)

It contributes to the proton level cross section as

σep→eX 3
∫
dξfq(ξ,Q

2)σeq→eq

=
1

4Ekmp

∫
d3~k′

(2π)32Ek′

e4

q4
Lµν

4πQ2
qx

−q2
(pµ`ν + pν`µ − p · `gµν)fq(x,Q

2) .

(378)

As expected, the δ-function ensures ξ = x. This can be used to compare with
the last line of Eq. (364). Matching the two, we obtain

Wµν =
Q2
qx

−q2
(pµ`ν + pν`µ − p · `gµν)fq(x,Q

2) . (379)

Recall that `µ = xpµ + qµ. We have

p · ` = xm2
p + p · q ' p · q = − q

2

2x
, (380)

and

x(pµ`ν + pν`µ − p · `gµν) = x

(
xpµpν + pµqν + xpµpν + pνqµ +

q2

2x
gµν

)
= x

[
q2

2x

(
gµν −

qµqν
q2

)
+

1

2x
qµqν + pµqν + pνqµ + 2xpµpν

]
=
q2

2

(
gµν −

qµqν
q2

)
+ x

[
−p · q
q2

qµqν + pµqν + pνqµ −
q2

p · q
pµpν

]
=
q2

2

(
gµν −

qµqν
q2

)
− xq2(p · q)

[
qµ
q2

qν
q2
− pµ
p · q

qν
q2
− pν
p · q

qµ
q2

+
pµ
p · q

pν
p · q

]
=
q2

2

(
gµν −

qµqν
q2

)
− xq2(p · q)

(
pµ
p · q

− qµ
q2

)(
pν
p · q

− qν
q2

)
.

(381)
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They lead to

Wµν = −
Q2
q

2
fq(x,Q

2)

(
gµν −

qµqν
q2

)
+ xQ2

qfq(x,Q
2)(p · q)

(
pµ
p · q

− qµ
q2

)(
pν
p · q

− qν
q2

)
.

(382)

Comparing this with Eq. (371) where the form factors are introduced, we obtain

F1(x,Q2) =
∑
q

Q2
q

2

[
fq(x,Q

2) + fq̄(x,Q
2)
]
,

F2(x,Q2) = x
∑
q

Q2
q

[
fq(x,Q

2) + fq̄(x,Q
2)
]
.

(383)

The parton model implies a close relationship between the two form factors

F2(x,Q2) = 2xF1(x,Q2) , (384)

which has been tested experimentally.
Another remarkable observation is the Q dependence in the PDFs are only

logarithmic. It in turn implies that the form factors only mildly depend on Q.
Neglecting their Q dependence, the form factors only depend on x. This feature
is called Bjorken scaling. In general, there is no reason to expect such a feature
to be there. It is a unique prediction of the parton model.

* * *
In this section, we only touched the basics of the parton model and discussed

its application to high-energy hadron colliders. We have left many important
aspects of perturbative QCD untouched, such as final state radiations and jet
physics. You are referred to this very nice lecture note to explore further,
https://arxiv.org/pdf/0910.4182.pdf.
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5 QCD at Low Energies

A novel property of strong interaction is asymptotic free. The value strong
coupling α3 depends on the energy scale of the hard scattering process Q. It
decreases as Q gets larger. For Q larger than several GeV, α3 becomes small
enough so that perturbation theory works, where we can treat QCD in a similar
fashion as QED. We did this when discussing deep inelastic scattering and high-
energy collider experiments. On the other hand, as Q goes below a few GeV,
the strong coupling becomes very large, as shown by the plot below.

The running of α3 is governed by the QCD β function,

dα3

d logQ
= −

(
11− 2nf

3

)
α2

3

2π
+ · · · , (385)

where · · · are terms of higher power in α3. They are not negligible when α3

becomes order 1 or larger. The scale where α3 becomes infinity is an intrinsic
scale the QCD. It is called the QCD scale, ΛQCD ' 200 MeV. Around this scale,
two things happen to the quarks and gluons which participate in the strong
interaction.

One is confinement, where quarks, antiquarks and gluons are no longer the
free particles for constructing the S matrix at low energies, or at length scales
above a fm. Instead, they confine into colour singlet hadrons. The simples
states include mesons, made of (qimq̄

j
n)δij , and baryons, made of (qimq

j
nq
k
l )εijk.

Here we use the same convention as introduced in section 2.1, where i, j, k are
color indices and m,n, l are flavor indices. The top quark is an exception. It
decay so fast that there is no time for it to form any hadron states. Gluons will
form massive glueballs.
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In this section, we mainly deal with mesons and baryons made of light quarks,
u, d, s. Heavy quark mesons or and baryons (containing c, b) do exist. Because
the masses of c, b lie above GeV scale, the value of αs is border line perturbative.
As a result, heavy quarkonia such as Υ = (bb̄) and J/ψ = (cc̄) can be described
by non-relativistic effective theory of QCD, similar to the positronium described
by NRQED. For mesons containing one heavy quark and one light quark, be-
cause the heavy quark mass is much higher than the QCD scale, we can picture
them as a cloud of light antiquark surrounding a non-relativistic core of heavy
quark. The size of the cloud is of order Λ−1

QCD. There exist heavy quark effective
theories (HQET) to deal with such a system. In contrast, hadrons made of only
light quarks are tightly bounded states with masses around or below GeV scale.

5.1 Chiral symmetries and the eightfold way

Our first goal is to find an effective Lagrangian for the lightest mesons made
of light quarks and antiquarks, using symmetries (and their breaking) as the
guiding principle. It will turn out to be highly nontrivial. Let’s look at the
strong interaction Lagrangian involving the three light quarks,

LQCD = −1

4
GaµνG

aµν +
∑

q=u,d,s

(q̄i��Dq −mq q̄q) . (386)

In the limit mq → 0, the Lagrangian has a large global symmetry

SU(3)L × SU(3)R × U(1)B . (387)

The SU(3)L and SU(3)R are chiral symmetries describing unitary rotations
among the three flavours of left-handed and right-handed quarks, respectively.
The U(1)B symmetry describe making a common phase redefinition to all the
quarks fields (both left and right). It is the baryon number symmetry!

Another U(1)A axial symmetry that makes a common phase redefinition to
all left-handed quarks, and an opposite phase to all right-handed quarks can also
leave the above Lagrangian invariant. However, at quantum level, it receives
gauge anomaly with respect to SU(3)2

c . Although it is OK for a global symmetry
to be anomalous, the U(1)A is badly broken and not a suitable symmetry to
start with. 4

The non-zero light quark masse breaks the SU(3)L × SU(3)R symmetries
explicitly, but only slightly. These symmetries are also not compatible with
QED, due to different electric charges of u and d, s. Because α is small, these
symmetries are only slightly broken.

The most significant symmetry breaking effect is actually spontaneous, due
to the second thing that occurs for QCD below GeV scale. It is called chiral
symmetry breaking, where colour-singlet quark-antiquark vacuum condensates
form

〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 . (388)

4Without the U(1)A being anomalous, we would have the ninth pseudo-Goldstone boson
η′. In reality, η′ is heavy thanks to the U(1)A anomaly.

87



The values of these condensates are about (300 MeV)3. They are much higher
than the light quark masses. Thus we first work in the limit of mq → 0 and α =
0. In this case, the quark condensates spontaneously breaks SU(3)L×SU(3)R.
The baryon symmetry is still good because the quark condensate is neutral in
U(1)B .

To see what SU(3)L×SU(3)R breaks down to, we rewrite the quark bilinear
fields in a matrix form

M =

ūRuL d̄RuL s̄RuL
ūRdL d̄RdL s̄RdL
ūRsL d̄RsL s̄RsL


=

uLdL
sL

(ūR d̄R s̄R
)
,

(389)

where it understood that when qL and q̄′R are put together, they automatically
switch position and form a Lorentz scalar.

Under the SU(3)L × SU(3)R chiral symmetry transformations,uLdL
sL

→ VL

uLdL
sL

 ,

uRdR
sR

→ VR

uRdR
sR

 , (390)

where VL,R are unitary matrices, the matrix M transforms as

M→ VLMV †R . (391)

The vacuum condensate of quarks corresponds to the diagonal elements of M
plus its Hermitian conjugation, and

〈M〉 =

〈ūRuL〉 〈d̄RdL〉
〈s̄RsL〉

 = 〈q̄RqL〉

1
1

1

 . (392)

Clearly, 〈M〉 is still invariant under joint chiral transformations with VL = VR.
This shows that the quark condensates (equal for three flavours) spontaneously
breaks SU(3)L × SU(3)R down to a diagonal one SU(3)V . Because SU(3) has
8 generators, the spontaneous (global) symmetry breaking leads to 8 massless
Goldstone bosons. They are excitations on top of 〈M〉. Each of them is a colour
singlet bound state of a quark and antiquark.

Using nonlinear realization, we can write

M = eiΣ/Fπ 〈M〉 = 〈q̄RqL〉eiΣ/Fπ , (393)

where all the Golstones are inside the 3× 3 matrix Σ,

Σ =

π
0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K

0 − 2√
3
η

 . (394)
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A fermion-anti-fermion system has parity P = (−1)L+1 where L is orbital an-
gular momentum. The lowest energy state has L = 0. Therefore, the above
Goldstone bosons are pseudo-scalar mesons. Their compositions are shown by
the following ket states

π0 =
|uū〉 − |dd̄〉√

2
≡ φ3 ,

η =
|uū〉+ |dd̄〉 − 2|ss̄〉√

6
≡ φ8 ,

π+ = |ud̄〉 ≡ 1√
2

(φ1 − iφ2) ,

π− = |dū〉 ≡ 1√
2

(φ1 + iφ2) ,

K+ = |us̄〉 ≡ 1√
2

(φ4 − iφ5) ,

K− = |sū〉 ≡ 1√
2

(φ4 + iφ5) ,

K0 = |ds̄〉 ≡ 1√
2

(φ6 − iφ7) ,

K
0

= |sd̄〉 ≡ 1√
2

(φ6 + iφ7) .

(395)

These particles are the lightest among all the hadrons. They are the building
blocks of the low energy effective theory of QCD.

Using the φi fields, we can also write Σ in terms of the Gell-Mann matrices,

Σ =

8∑
i=1

φiλi . (396)

The eight φi fields form an adjoint representation of the broken SU(3). They
are often presented in the following eight-fold way.

There are two diagonal Gell-Man matrices, λ3 and λ8 (see Eq. (99)). Acting
on the light quark fields, they define the isospin and strangeness quantum num-
bers, where I3(u) = 1/2, I3(d) = −1/2, I3(s) = 0. Only s has strangeness which
is −1. The quantum numbers for corresponding antiquarks are the opposite.
These numbers are additive when quarks and antiquark form mesons.
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5.2 Effective Lagrangian for pions

Next questions, what is the effective Lagrangian for the above light pseudo-scalar
mesons, and how come they end up being massive? We make close analogy to
the non-linear σ model. See first line of Eq. (129), but drop the radial mode
which is heavy. We define

U = exp(iΣ/Fπ) , (397)

where Fπ = 93 MeV is called the pion decay constant. Comparing with Eq. (393),
we know that

M = 〈q̄RqL〉U =
〈q̄q〉

2
U , (398)

where we used 〈q̄RqL〉 = 〈q̄LqR〉 = 1
2 〈q̄q〉. QCD preserves parity.

The leading Lagrangian for the Goldstone bosons is

Leff,kinetic =
F 2
π

4
Tr
(
∂µU∂

µU†
)
. (399)

Taylor expanding each U up to linear order in Σ, and using Eq. (396), we get
the canonical kinetic terms for φi’s,

Leff,kinetic ⊃
1

4
Tr (∂µΣ∂µΣ) =

1

4
Tr
(
λaλb

)
∂µφa∂

µφb =
1

2
∂µφa∂

µφa , (400)

where we used Tr
(
λaλb

)
= 2δab for Gell-Mann matrices.

Going beyond quadratic order, we find all terms from Leff contain deriva-
tives, thus none of them are responsible for the mass generation of the Goldstone
bosons. The key for their masses is due to the quark mass terms in the QCD
Lagrangian, Eq. (386). We rewrite them as

Lquark masses = Tr

mu

md

ms

uLdL
sL

(ūR d̄R s̄R
)+h.c. = Tr [MqM]+h.c. ,

(401)
where we used Eq. (389) and defined

Mq =

mu

md

ms

 . (402)

Further using Eq. (398) we find the effective Lagrangian for the quark mass
term,

Leff, mass =
〈q̄q〉

2
Tr
[
MqU

]
+ h.c. . (403)

Expanding U to quadratic order in Σ, we get the mass term (note the term
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linear in Σ vanishes due to the Hermitian conjugate),

Leff, mass ⊃ −
〈q̄q〉
2F 2

π

Tr
[
MqΣΣ

]
=
〈q̄q〉
F 2
π

[
1

2
(mu +md)(π

0)2 + (mu +md)π
+π− + (mu +ms)K

+K−

+(md +ms)K
0K

0
+

1

6
(mu +md + 4ms)η

2 +
mu −md√

3
π0η

]
.

(404)

Because the quark mass terms break the SU(3)L×SU(3)R chiral symmetry
explicitly, the pseudoscalar mesons are pseudo-Goldstone bosons. Their masses
are (neglecting the π0-η mixing term, justified because mu,d � ms)

m2
π0 ' m2

π± =
〈q̄q〉
F 2
π

(mu +md) ,

m2
K± =

〈q̄q〉
F 2
π

(mu +ms) ,

m2
K0 = m2

K
0 =
〈q̄q〉
F 2
π

(md +ms) ,

m2
η '
〈q̄q〉
3F 2

π

(mu +md + 4ms) .

(405)

Defining the averaged kaon mass

m2
K =

1

2
(m2

K± +m2
K0) =

〈q̄q〉
F 2
π

(
mu +md

2
+ms

)
, (406)

we find the Gell-Mann Okubo formula that relates different meson masses

m2
η '

1

3
(4m2

K −m2
π) , (407)

which works well experimentally.
The sum of Eqs. (399) and (403) are the leading terms in the effective chiral

Lagrangian,

Leff =
F 2
π

4
Tr
(
∂µU∂

µU†
)

+
〈q̄q〉

2
Tr
[
MqU

]
+ h.c. (408)

5.3 Charged pion decay

π± are the lightest mesons states that carries electric charge. If the Standard
Model only has QED+QCD gauge interactions but no weak interactions, π±

would be stable. In the presence of weak interaction, charged pions can decay via
the following Feynman diagram. It occurs through a virtual W boson exchange.
The final state particles are µ−ν̄µ or e−ν̄e.
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Because the W boson is much heavier than the pion, we can integrate it out
the work with the effective Lagrangian

Leff = −2
√

2GFV
CKM
ud

(
¯̀γµPLν`

)
(ūγµPLd) , (409)

where V CKM
ud is the CKM matrix element, and numerically very close to 1. The

most important step here is to match the dū quark states to the pion. This is
achieved using the partially conserved axial current (PCAC) relation. At matrix
element level, it states

〈0|ūγµγ5d|π−(q)〉 = −i
√

2Fπq
µe−iq·x , (410)

where Fπ = 93 MeV. Physically, we can treat an axial current made of funda-
mental quarks as a pion field and use it to annihilate a pion state. In coordinate
space, the matching works as

ūγµγ5d↔
√

2Fπ∂
µπ−(x) . (411)

The vector current counterpart 〈0|ūγµd|π−(q)〉 is zero because parity does not
work.

The PCAC relation allows us to match Eq. (409) further to the low-energy
effective Lagrangian in the language of pion

Leff = −
√

2GFFπV
CKM
ud

(
¯̀γµPLν`

)
∂µπ− . (412)

With this, we can readily write down the decay amplitude of charged pion,
π−(P )→ `−(p1) + ν̄`(p2),

iM = −i
√

2GFFπ

[
ū(p1, s1)γµPLv(p2, s2)

]
(−iPµ)

= −
√

2GFFπ

[
ū(p1, s1)γµPLv(p2, s2)

]
(p1 + p2)µ

= −
√

2GFFπm`

[
ū(p1, s1)PLv(p2, s2)

]
,

(413)

where in the last step we used equation of motion for final state spinors, and
the fact that neutrino is massless. We also set V CKM

ud to 1. Clearly, the decay
amplitude is proportional to the charged lepton mass m`. It is the famous
helicity suppression in leptonic charged meson decays.
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The amplitude square is

|M|2 = 2G2
FF

2
πm

2
`Tr

[
(�p1 +m`)PL�p2PR

]
= 8G2

FF
2
πm

2
`(p1 · p2)

= 4G2
FF

2
πm

2
`(m

2
π −m2

`) .

(414)

The resulting decay rate is

Γπ−→`−ν̄` =
1

4π
G2
FF

2
πm

2
`mπ

(
1− m2

`

m2
π

)2

. (415)

Due to the charge lepton mass dependence, π− prefers to decay into µ−ν̄µ over
into e−ν̄e.

Using m−π = 139.6 MeV, mµ = 105 MeV, we find charged pion decay rate
to be 2.7 × 10−17 GeV. The lifetime is τπ± = 2.4 × 10−8 sec. With such a life-
time, boosted charged pions appear like stable particles at high-energy collider
experiments.

The decay branching ratio of π− into µ−ν̄µ is almost 100%. The decay
branching ratio into e−ν̄e is approximately

Brπ−→e−ν̄e =
Γπ−→e−ν̄e
Γπ−→µ−ν̄µ

' 1.2× 10−4 ∼ m2
e

m2
µ

. (416)

Another useful branching ratio to know is

Brπ−→µ−ν̄µγ ' 2× 10−4 ∼ α

4π
, (417)

which 1/(16π2) comes from additional particle in the final state phase space.

5.3.1 Three-body charged pion decay

It is an interesting exercise to think about the π− → e−ν̄eγ decay. Naively, it is
a three-body decay and the usual helicity suppression argument does not apply
here. One would expect it to have a branching ratio comparable to that of the
π− → µ−ν̄µγ decay given in Eq. (417). However, the experimentally measured
value is

Brπ−→e−ν̄eγ ' 7.4× 10−7 � Brπ−→µ−ν̄µγ , (418)

which indicates that the electron mass square suppression is still at work.
The fundamental reason for the appearance of m2

e in this decay rate is the
Ward identity, which effectively allows us to integrate by parts in Eq. (412) and
apply equations of motion, even if the fermion fields are the internal lines of a
Feynman diagram and off-shell. In this subsection, we provide a proof of it.

At fundamental level, there are three ways to radiate a photon from the π−

decay diagram, as shown below.
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In contrast, in the effective Lagrangian with the W boson integrated out,
Eq. (412), we could only radiated the photon from the π− or `− lines. The
middle diagram would correspond to a contact interaction among π−, γ, `−, ν̄`.
Where will it come from?

The solution is to impose QED gauge invariance to the effective theory,
Eq. (412), and promote the partial derivative on the charged pion field into a
covariant derivative,

Leff = −
√

2GFFπV
CKM
ud

(
¯̀γµPLν`

)
Dµπ

− , (419)

where Dµπ
− = ∂µπ

− + ieAµπ
−. This leads to the following Feynman rules.

In addition, the regular QED vertex for `−-photon interaction is

From these Feynman rules, we can look at the three Feynman diagrams for
π− → `−ν̄`γ. The amplitude for the first diagram is obviously proportional to
m`, upon the use of equation of motion for the state fermions (both are on-
shell). As said, the middle diagram corresponds to a contact interaction in the
heavy W limit. The amplitude is

iM2 = e
√

2GFFπ

[
ū(p1, s1)�ε

∗PLv(p2, s2)
]
. (420)
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The amplitude for the last diagram is

iM3 = ū(p1, s1)
(
−ieγµε∗µ

) i

�p1 − �k −m`

(
−
√

2GFFπ(�p1 + �p2 + �k)pL

)
v(p2, s2)

= ū(p1, s1)
(
−ieγµε∗µ

) i

�p1 − �k −m`

(
−
√

2GFFπ(�p1 + �k)pL

)
v(p2, s2)

= ū(p1, s1)
(
−ieγµε∗µ

) i

�p1 − �k −m`

(
−
√

2GFFπ(�p1 + �k +m` −m`)pL

)
v(p2, s2)

= −e
√

2GFFπū(p1, s1)�ε
∗PLv(p2, s2)

+ e
√

2GFFπū(p1, s1)�ε
∗ m`

�p1 − �k −m`

PLv(p2, s2) ,

(421)

where k is the four momentum of the outgoing photon.
Clearly, the first term in the last step cancels iM2 found above. The sum of

all amplitudes is proportional to m`. Gauge invariance plays an important role
here.

5.4 Neutral pion decay

The PCAC relation in Eq. (410) can be generalized to all eight axial vector
currents, constructed with the broken generators from SU(3)L × SU(3)R →
SU(3)V . Define

Jµ5i = q̄γµγ5
λi
2
q , q =

ud
s

 , (422)

the general PCAC relation is

〈0|Jµ5i|φj(q)〉 = −iFπqµe−iq·xδij . (423)

We apply it to π0 in this subsection,

〈0|Jµ53|π0(q)〉 = −iFπqµe−iq·x . (424)

The following matching is then dictated

Jµ53 =
1

2
(ūγµγ5u− d̄γµγ5d)↔ Fπ∂

µπ0 . (425)

We mentioned earlier that Jµ53 is anomaly free with respect to SU(3)2
c .

From the above current composition, we can see it is due to a cancelation
between the u and d quark contributions in the triangle diagram (see discussions
in sec. 2.4). However, due to the different electric charges of u and d, the current
Jµ53 is actually anomalous with respect to U(1)2

e.m.. In the massless quark limit,
the divergence of the current is

∂µJ
µ
53 = − e2

16π2
εµνρσFµνFρσ ×

[
1

2

(
2

3

)2

− 1

2

(
−1

3

)2
]
Nc

= − e2

32π2
εµνρσFµνFρσ = − α

4π
Fµν F̃

µν .

(426)
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Note again that F̃µν ≡ 1
2ε
µνρσFµνFρσ.

Applying the matching condition Eq. (425), we obtain an equation of motion
of π0 in the massless quark (thus massless π0) limit,

2π0 = − α

4πFπ
Fµν F̃

µν . (427)

Such an equation of motion can be obtained by introducing an effective pion-
photon interacting term. The low energy effective Lagrangian for π0 reads

Leff(π0) =
1

2
∂µπ

0∂µπ0 − α

4πFπ
π0Fµν F̃

µν . (428)

Turning on the pion mass with nonzero quark mass, the second term allows
π0 to decay into two photons. It can be rewritten as

Lint = − α

2πFπ
π0εµνρσ∂µAν∂ρAσ . (429)

The matrix element for π0 → γ(p1)γ(p2) is

iMπ0→γγ = 2×
(
− α

2πFπ

)
εµνρσ(ip1µ)(ip2ρ)ε

∗
ν(p1)ε∗σ(p2) . (430)

The prefactor 2 is a symmetry factor.
Using the identity εµνρσεµ

′νρ′σ = 2(−gµµ′gρρ′ + gµρ′gµ′ρ), we get

|Mπ0→γγ |2 =
α2m4

π

2π2F 2
π

. (431)

The decay rate is

Γπ0→γγ =
1

2
× 1

8π
|Mπ0→γγ |2

|~p1cm|
m2
π

=
α2m3

π

64π3F 2
π

. (432)

The prefactor 1
2 is there for identical photons in the final state. Numerically,

usingmπ0 = 134.98 MeV, we get Γπ0→γγ = 7.6×10−9 GeV. This is notably much
larger than the charged pion decay rate. The lifetime of π0 is 8.6 × 10−17 sec.
At collider experiments, π0 decays promptly into a pair of photons.

Another possible decay channel of π0 is via virtual Z-boson exchange, whose
rate is much lower than the above diphoton decay. The Z-mediated decay of
π0 → νν̄ has not been measured experimentally. The upper bound on its
branching ratio is 2.7× 10−7.

5.5 Pion-nucleon coupling

For the rest this section, we first discuss the coupling of nucleons (proton and
neutron) to the pions in effective theory, and then their connections to the
fundamental theory with quarks.
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The effective nucleon-pion interacting Lagrangian is

Leff =
gπNN
M

N̄γµγ5
σa

2
N∂µπ

a + · · · (433)

where · · · represent terms involving two or more pions, σa are Pauli matrices,
M is the nucleon mass, and

N =

(
p
n

)
. (434)

More explicitly, we have

Leff =
gπNN
2M

(
p̄ n̄

)
γµγ5

(
∂µπ

0
√

2∂µπ
+

√
2∂µπ

− −∂µπ0

)(
p
n

)
=
gπNN
2M

(p̄γµγ5p− n̄γµγ5n) ∂µπ
0

+
gπNN√

2M
p̄γµγ5n∂µπ

+ +
gπNN√

2M
n̄γµγ5p∂µπ

− .

(435)

For on-shell nucleons, the above effective Lagrangian can also be simplified by
differentiating by parts and using equations of motion,

Leff = −gπNN (p̄iγ5p− n̄iγ5n)−
√

2gπNN
(
p̄iγ5nπ

+ + h.c.
)
. (436)

Numerically, the value of gπNN is 12.9. It is a huge coupling.
The pion exchange potential between proton and neutron leads to the deuteron

nucleus as a bound state.

5.6 W -boson-nucleon coupling

Here we consider how the left-handed quark current matches to the nucleon
level operators. The discussion is relevant for calculating neutron beta decay.

The charged current interaction we are interested is

LCC =
g2√

2
ūγµPLdW

+
µ + h.c. , (437)

where we already set V CKM
ud = 1. Taking its matrix element between proton

and neutron states, we have

〈p(p2)|LCC|n(p1)〉 =
g2

2
√

2
W+
µ

[
〈p(p2)|ūγµd|n(p1)〉 − 〈p(p2)|ūγµγ5d|n(p1)〉

]
=

g2

2
√

2
W+
µ

[
F1(q2)ū(p2, s2)γµu(p1, s1) + F2(q2)ū(p2, s2)σµνqνu(p1, s1)

−G1(q2)ū(p2, s2)γµγ5u(p1, s1)−G2(q2)ū(p2, s2)γ5q
µu(p1, s1)

]
,

(438)

where q = p1−p2 is the momentum exchange to the W boson, u(p1, s1), u(p2, s2)
are the spinors for the neutron and proton, respectively. In the second step, we
introduced nucleon level form factors.
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In the small q limit, applicable to neutron decay, we obtain the effective
Lagrangian

Leff =
g2

2
√

2
W+
µ p̄γ

µ [F1(0)−G1(0)γ5]n , (439)

where F1(0) = 1 and
gA ≡ G1(0) ' 1.27 . (440)

5.7 Goldberger-Treiman relation

The Goldberger-Treiman relation observes a remarkable connection between the
nucleon-pion and nucleon-W effective interactions introduced above.

Let us take a closer look at the matrix element of axial current in Eq. (439),

〈p|ūγµγ5d|n〉 = G1(q2)ū(p2, s2)γµγ5u(p1, s1) +G2(q2)ū(p2, s2)γ5q
µu(p1, s1) .

(441)
We first multiply qµ on both side (corresponding to taking the divergence of the
axial current in coordinate space). Because ūγµγ5d is a charged current, it is
anomaly free. We work in the chiral limit where quark masses are zero. These
imply

qµ〈p|ūγµγ5d|n〉 = 0 . (442)

On the right-hand side, we use equation of motion for the nucleon spinors, which
gives

qµ

[
G1(q2)ū(p2, s2)γµγ5u(p1, s1) +G2(q2)ū(p2, s2)γ5q

µu(p1, s1)
]

=
[
−2MG1(q2) + q2G2(q2)

]
ū(p2, s2)γ5q

µu(p1, s1) .
(443)

In the q2 → 0 limit, we find the relation

G2(q2) ' 2MG1(q2)

q2
, for q2 → 0 . (444)

This behaviour means G2(q2) has a pole as q2 → 0. In this regime, it is much
larger than G1(q2). With this knowledge, we consider the small q2 limit of
Eq. (441), which is approximately

〈p|ūγµγ5d|n〉 ' G2(q2)ū(p2, s2)γ5q
µu(p1, s1) , for q2 → 0 . (445)

Next, for the left-hand side of Eq. (441), we replace the axial current using
the matching between quark current and pion field, Eq. (411) (which works at
low energy q2 → 0)

〈p|ūγµγ5d|n〉 =
√

2Fπ〈p|∂µπ−|n〉 . (446)

The right-hand side correspond to the following diagram and can be calculated
by inserting the π−pn interaction in Eq. (436).
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n

p

〈p|ūγµγ5d|n〉 =
√

2Fπ

(
−i
√

2gπNN

) [
ū(p2, s2)iγ5u(p1, s1)

]
(−iqµ)

i

q2 −m2
π

' 2gπNNFπq
µ

q2

[
ū(p2, s2)γ5u(p1, s1)

]
.

(447)

In the last step, we take the chiral limit where mπ → 0. Comparing this with
Eq. (445) in the q2 → 0 limit, we get

G2(q2) ' 2gπNNFπ
q2

, for q2 → 0 . (448)

Further comparing with Eq. (444), we obtain

gπNNFπ = MG1(0) , (449)

or

gπNN =
M

Fπ
gA , (450)

This is the Goldberger-Treiman relation.
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