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Nucleation is the initial process of most phase transformations and is of fundamental
importance for the kinetics of mineral reactions. A departure from equilibrium is
required to overcome the energy barrier associated with nucleation, which is a function
of the structural and compositional differences between the nucleus and the metastable
reactant, and the level of elastic deformation experienced by the nucleus as it forms in
the host lattice. Nucleation in geological materials almost always takes place at grain
boundaries, crystal defects or impurities, which catalyse the nucleation process and
influence the chemical composition, size, shape, lattice orientation and spatial
distribution of nuclei with important implications for the texture and microstructure
evolution of rocks. Nuclei are microscopic in most systems and thus are too small to be
observed in experiment. This is why nucleation has been intensively studied
theoretically and through numerical simulations. In those treatments, nucleation
integrates more elementary processes such as chemical diffusion and interface motion.

This chapter provides the essential physics of the thermodynamics and kinetics of
nucleation. It reviews the fundamentals of the classical nucleation theory including the
chemical driving force for nucleation in partitioning systems and the interfacial area of
clusters, discusses possible nucleus/substrate interactions and their influence on the free
energy of the nucleus and the energy barrier to nucleation, and presents expressions for
the classical nucleation rate. In a second part, extensions to CNT are outlined that couple
long-range diffusion with the kinetics of interface processes in order to address the
formation of nucleation exclusion or depleted zones around supercritical clusters and the
enrichment of the precipitated components in the vicinity of subcritical clusters. Finally,
the reader is introduced to non-classical gradient-energy continuum approaches to
nucleation in inhomogeneous systems, and to the phase field method for the simulation
of microstructure evolution.

1. Classical nucleation theory

Classical nucleation theory (CNT) is a model developed to quantify and predict the
initial process during phase transformations associated with an energy barrier caused
by structural differences between a reacting and product system. This type of phase
transformation is referred to as discontinuous phase transformation. In its initial form,
CNT is based on the work of Gibbs (1928) who introduced the concept of interfaces of
zero thickness between homogenous phases in his attempt to develop a formulation for
the thermodynamics of heterogeneous systems. Kaischew and Stranski (1934)
extended CNT in their application to the formation of crystals from supersaturated
vapour, based on work done previously by Volmer and Weber (1926) on vapour
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condensation. Contributions by Becker and Döring (1935), Volmer (1939), Frenkel
(1946), and Turnbull and Fisher (1949) expanded CNT for application to condensed
systems. CNT may now be the best known quantitative approach to nucleation as it
successfully predicts the main features of nucleation in appropriate systems
irrespective of its inherent approximations.
At the heart of CNT is the description of the energy barrier associated with the

formation of the interface between reactants and products of a discontinuous phase
transformation, and a formalism that links this energy barrier to the kinetics of
molecular attachment and detachment processes at the interface. Because long-range
diffusion through the reacting system is not accounted for, CNT is an inherently
interface-limited model.

1.1. Energy barrier to nucleation

The nucleation barrier is assumed to be a function of the energy required to form the
structural transition across the product-reactant interface per unit interfacial area, s,
and the chemical force that drives nucleation, DGV. For a given pressure (P),
temperature (T) and bulk chemical composition (X),DGV is the difference in bulk Gibbs
energy between reacting system and nucleating phase, per product molecule. For an
interfacial area that is composed of i individual regions, Ai, the Gibbs energy of
formation of a product cluster with n molecules, DGn, is written

DGn ¼ nDGV þ
X

i
Aisi ð1Þ

Because DGV is negative in a thermodynamically favoured phase transformation and
Ssi is always positive, and because the contribution of the interfacial energy term to
DGn is larger than that of the bulk term for relatively small n given the surface to volume
relationship, DGn develops a maximum before it decreases and becomes negative with
an increase of cluster size.
If s is direction-independent, a spherical cluster geometry can be assumed so that

equation 1 simplifies to

DGn = nDGV + (36p)1/3(!vvn)2/3s (2)

where !vv is the volume of a molecule in the cluster. Figure 1 illustrates the relationship
between DGn and n assuming a spherical cluster geometry.
In general, clusters with a size that maximizes DGn are referred to as nuclei (or critical

clusters), and their formation is called nucleation. The number of molecules contained in a
spherical critical cluster, n*, can be found by differentiation of (2) and is given by

n% ¼ &32p
!vv2s3

3ðDGV Þ3
ð3Þ

so that its radius, r*, is equal to

r% ¼ &2
!vv2s

DGV
ð4Þ
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The maximum of DGn (Fig. 1) can be obtained by combining equations 2 and 3, and
is given by

DG% ¼ 16p!vvs3

3ðDGV Þ2
ð5Þ

DG* represents the energy barrier which has to be overcome to form critical clusters
of the product of the discontinuous phase transformation. These clusters are in unstable
equilibrium with the reacting system because the decomposition of subcritical clusters
(n < n*) and the attachment of additional molecules to the surfaces of supercritical
clusters (n > n*) are energetically favoured as that decreases DGn (Fig. 1). Cluster sizes
for which

DG* 5 DGn 5 DG* & kBT (6)

where kB is Boltzmann’s constant, mark the critical region of nucleation (Fig. 1).
According to equations 3 and 5, the critical cluster region as well as n* and DG* increase
with a decrease in DGV so that discontinuous phase transformations close to equilibrium
require relatively fast transfer processes at the interface for nucleation to take place. Note
that CNT does not define n* and DG* for DGV = 0. An increase in DGV results in a
decreasing energy barrier to nucleation and smaller critical clusters as fewer molecules are
required for their formation. In the case of exceedingly small critical clusters, the
separation of bulk and interfacial energy terms, expressed in equation 1 and referred to as
capillarity approximation of CNT, cannot be applied and alternative methods such as the
Cahn-Hilliard approach (section 3) may be used.
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Critical
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Figure 1. The Gibbs energy of cluster formation, DGn, as a function of the number of molecules per

product cluster, n, assuming an isotropic interfacial energy, s, and a negative chemical driving force for
nucleation,DGV.DG* is the critical energy barrier to nucleation, and n* refers to the number of molecules

in the critical cluster.
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1.1.1. Chemical driving force and nucleus composition in partitioning systems

The chemical driving force for nucleation, DGV, is the Gibbs energy change associated
with the formation of a small amount of the product phase out of the metastable reacting
system, per molecule of the new phase. It may be seen as the Gibbs energy per product
molecule that drives the processes underlying nucleation such as molecular attachment
and detachment processes at the interface and migration of the interface into the
reactant. In a partitionless discontinuous phase transformation, the nucleus grows with
the same composition as the reactant. However, nucleation in natural systems is
commonly a partitioning process so that the composition of the nucleus differs from
that of the reacting system. In such a case, the Gibbs energy change is maximized if the
differences in chemical potentials between metastable reacting system and nucleus of
the components involved in the phase transformation are identical.
For a binary system with components A and B the composition of the nucleus, xnuc

P ,
can be determined graphically by the point of tangency on the G&x function of the
product, P, of a line that is parallel to the tangent that corresponds to the energy state of
the reactant, R (stippled lines in Fig. 2c,d). As shown in Fig. 2c, xnuc

P in partitioning
systems differs from the equilibrium composition of the product, xequ

P . The difference

A

T < Tequ
G

R

B
R

A B

equilibrium

P R

xRequ

xRequ

µ
µ

a b T = Tequ

A BxPequ xRequ

xRequ

equilibrium

P
R

A
Rµ

A
Pµ
=

B
Rµ

B
Pµ
=

G c

A B

{

T > Tequ

equilibrium

P

R

xPnuc xPequ

A∆µ

B∆µ{

d T >> Tequ

A B

P

R

equilibrium

xPnuc xPequ

NA∆GV

{ {A∆µ

B∆µ∆Gr

NA∆GV
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between xnuc
P and xequ

P increases with departure from equilibrium required to overcome
the energy barrier to nucleation, and depends on the G&x relationships of the phases
involved (Fig. 2d), provided that the bulk composition of the system, xequ

R , does not
change during the nucleation. Once nucleated, the product will change its composition
towards equilibrium with the surrounding reactant if diffusion within the product and
reacting system and across their interface is efficient. The molar Gibbs energy
difference between the initial and final equilibrium states, DGr (Fig. 2d), is the
maximum available force that drives all the processes of the overall phase
transformation. Diffusion transfers material between R and P resulting in the growth
of P and the dissipation of Gibbs energy until equilibrium is established. This may be
visualized by rotating the two stippled parallel lines in Fig. 2 tangential to R and P until
they coincide with the single equilibrium tangent to R and P (equilibrium line in
Fig. 2c, d). DGr may be obtained through integration over the Gibbs energy dissipated
during the diffusion. The total amount of DGr that can be dissipated depends on the bulk
composition of the system, xequ

R , and reaches a maximum if xequ
R approaches xequ

P .
The tangent-method may also be applied to nucleation in multicomponent systems

and was utilized by Gaidies et al. (2011) to estimate DGV associated with the contact
metamorphic nucleation of garnet in a metapelite of the aureole of the Nelson Batholith
(British Columbia, Canada). The reacting rock matrix was modelled as a MnO–Na2O–
CaO–K2O–FeO–MgO–Al2O3&SiO2–H2O–TiO2 (MnNCKFMASHT) system using the
thermodynamic data of Holland and Powell (1998). The matrix was assumed to be
equilibrated at any point in P-T space, but the nucleation of garnet was assumed to be
kinetically hindered. Such a scenario may be envisioned for the nucleation of phases
with structural properties significantly different from those of the phases in the reacting
system, and where diffusion in the reacting system is faster than across the interface
with the nucleus. DGV is calculated based on the tangent-method outlined above and is
illustrated in Fig. 3a as a function of the departure from equilibrium.
Note that the coloured P-T regions correspond to the conditions where DGV is negative so

that the formation of garnet is thermodynamically favoured. In general, DGV increases with
thermal overstep of the low-T conditions of the stability field of garnet-bearing assemblages,
and decreases towards the high-T limit. Similar to the exemplarily binary system, DGV

associated with the crystallization of garnet in multicomponent systems is a function of the
G&x relationships of the matrix phases and garnet, and how these thermodynamic properties
varywith temperature and pressure. The lowerT limits at which staurolite and andalusite enter
the matrix assemblages are characterized by a ‘‘channel’’ in DGV-P-T space and mark the
conditions with the highest garnet nucleation probability (stippled line in Fig. 3a).
Figure 3b shows DGr associated with the formation of garnet from the respective

phase assemblages in the modelled bulk chemical system. It can be seen thatDGr differs
from DGV not only quantitatively but also with respect to its dependence on P-T.
Whereas DGV reflects the force on a product molecule involved in the formation of a
critical cluster, DGr corresponds to the integrative molar Gibbs energy that dissipates
through the entire transformation process. Hence, DGV can be understood as part of
DGr, but because relatively few molecules are involved in nucleation compared to the
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growth of the particles to macroscopic crystal sizes, the majority of DGr is used for the
diffusion associated with crystal growth.
Similar to DGV, the differences between xnuc

P and xequ
P of garnet increase with

departure from equilibrium. Whereas the differences between xnuc
P and xequ

P are small
with respect to the pyrope and grossular contents of garnet, the spessartine and
almandine contents of a nucleus differ significantly from the equilibrium composition
(Fig. 4). Even though chemical fractionation during garnet crystallization is common,
reflecting relatively low rates of diffusion in garnet, and irrespective of its influence on
the thermodynamically effective bulk composition, the impact of chemical
fractionation on DGr, DGV and garnet chemistry cannot be shown in a P-T diagram
because it is dependent on the P-T path of crystallization.

1.1.2. Elastic strain energy

If there are differences in the volume or shape between the nucleating phase and the
reacting host then the energetics of nucleation may involve elastic strain energy, DGE.
This instance may be particularly relevant for discontinuous phase transformations at
the solid state. In the case of lattice misfits, DGE will be positive and will scale with the
volume of the nucleus so that equation 1 changes to

DGn ¼ nðDGV þ DEÞ þ
X

i
Aisi ð7Þ

Assuming a spherical nucleus geometry and an isotropic interfacial energy, DGn can be
written as

DGn ¼
4pr3

3!vv
ðDGV þ DGEÞ þ 4pr2s ð8Þ
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where the volume of a cluster corresponds to n!vv. Hence, r* can be written as

r% ¼ &2!vvs
DGV þ DGE

ð9Þ

so that

DG% ¼ 16p!vv2s3

3ðDGV þ DGEÞ2
ð10Þ
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According to equation 8, nucleation can only take place if DGE <| DGV|. Hence, the
interfacial term and DGE of equation 10 represent the energy penalty to nucleation as
they both increase DG* in a thermodynamically favoured phase transformation.
In general, DGE is proportional to the square of the strain associated with the misfit

between cluster and host lattice, depends on their elastic properties, and is a complex
function of the cluster shape (Eshelby, 1957). Assuming isotropic elasticity and
incompressible clusters, Nabarro (1940) derived an expression for DGE where the
shape of the cluster can be described by an ellipsoid of revolution with the semi-axes a,
a and c, separated from the host lattice by an incoherent interface. According to
Nabarro (1940)

DGE ¼ 6S!vve2F
c
a

8
:
9
; ð11Þ

where S is the shear modulus, e is the misfit strain, and F is a shape-dependent function
of a and c. As can be seen from equation 11, DGE is minimized if F approaches 0. In
such a case, the shape of the cluster corresponds to that of a thin disc for which c << a.
Since both DGE and the interfacial energy term depend on cluster shape, it may be

assumed that the geometry of a cluster may be variable reflecting the minimization of
DG*. Lee et al. (1977) incorporated DGE into the calculation of DG* associated with
the formation of clusters of varying shape that follow the geometric constraints of
ellipsoids of revolution. According to Lee et al. (1977), DGn may be expressed as

DGn ¼
4pa3

3!vv
bðDGV þ DGEÞ þ ½2þ gðbÞ(pa2s ð12Þ

where b is the aspect ratio of the cluster, c/a, and g(b) is given by

gðbÞ ¼

2b2ffiffiffiffiffiffiffiffi
1&b2
p tanh&1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& b2

q
for b<1

2 for b=1
2bffiffiffiffiffiffiffiffiffiffi
1&b&2
p sin&1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& b2

q
for b>1

8
>>><

>>>:
ð13Þ

Differentiation of equation 12 with respect to a results in an expression for the
critical radius that accounts for the influence of cluster shape on DG*, and can be
written as

a% ¼ &!vvs½2þ gðbÞ(
2bðDGV þ DGEÞ

ð14Þ

Substituting equation 14 into equation 12, one obtains:

DG%ðbÞ ¼ p!vv2s3½2þ gðbÞ(3

12b2ðDGV þ DGEÞ2
ð15Þ
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Normalization of DG*(b) with respect to the critical energy barrier for a spherical
cluster shape in the absence of strain energy (DG* in equation 5) results in

DG%ðbÞ
DG%

¼ ½2þ gðbÞ(3

½8bð1þ DGE=DGV Þ(2
ð16Þ

Figure 5 shows the variation of the normalized energy barrier, DG*(b)/DG*, with b for
different ratios of DGE/DGV for coherent nucleation (Lee et al., 1977). In general, the
normalized energy barrier rises with an increase of DGE and a decrease of b. If DGE

contributes less than ~85% to the total bulk energy of cluster formation, a spherical cluster
geometry (b = 1) results in a reduced energy barrier compared to cluster geometries with
b < 1. It is only for higher relative contributions ofDGE that the energy barrier is minimized
if the cluster geometry approaches the shape of an oblate spheroid. In those cases, the
barrier is minimized if the cluster shape is that of a thin disk with b ranging between 0.2 and
0.3. In other words, if | DGV | is large compared to DGE, a spherical cluster shape may be a
reasonable approximation of nucleus geometry provided that s is isotropic.

1.1.3. Interfacial area

Critical cluster formation in the uniform region of the bulk matrix is referred to as
homogenous nucleation. Heterogeneous nucleation refers to critical cluster formation
in contact with a surface where interactions between cluster and surface reduce the
energy barrier for nucleation. Heterogeneous nucleation commonly occurs at special
sites such as foreign particles, crystal defects or grain boundaries. At these sites
nucleation is catalysed because the interfacial energy and, hence, DG*, are reduced.
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In the case of cluster formation on a flat surface in the absence of DGE and
considering isotropic interfacial energies, the cluster has the shape of a spherical cap
the size of which is determined by the contact angle f between the cluster and the
reacting system (Fig. 6a). In this case, the critical energy barrier is reduced as a
function of f and is given by (Christian, 1975)

DGflat
* = f(f)DG* (17)

where

f(f) = !(2 & 3cosf + cos3f) (18)

and

cosf = (sSa & sSb)/ sab (19)

with

0 4 f 4 180º (20)

so that

DG%flat ¼
4p!vv2ðsabÞ3ð2& 3 cosfþ cos3 fÞ

3ðDGV Þ2
ð21Þ

If f = 90º, the energy barrier to nucleation on the flat surface, DGflat
* , is half of that

required for homogenous nucleation,DG*. For largerf,DGflat
* increases until it is equal

to DG* at f = 180º. As f approaches 0, DG* decreases until it disappears at f = 0. This
phenomenon is referred to as wetting of the surface or grain boundary.
Equation 21 may be a reasonable approximation for nucleation of a liquid from a gas

at a flat surface, or precipitation on a mineral surface in contact with an aqueous
solution. However, nucleation in most geological materials probably occurs on
heterogeneities such as grain boundaries, grain edges or corners. For nucleation at a
grain boundary the interfacial area of the cluster will be twice that of the a&b interface
of the spherical cap (Fig. 6b) so that

DG%gb ¼ 2f ðfÞDG% ¼ 8p!vv2ðsabÞ3ð2& 3 cosfþ cos3 fÞ
3ðDGV Þ2

ð22Þ
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Figure 6. Geometry of (a) a cluster of phase b shaped as a spherical cup on a flat surface, surrounded by

phase a, and (b) a lens-shaped cluster of phase b on a grain boundary in phase a.
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Expressions similar to equations 21 and 22 can be derived for nucleation at grain
edges or corners using their geometric relations for volume and interfacial area.
According to Cahn (1956), the energy barrier decreases with a decrease in the
dimensionality of the nucleation site. In other words, the barrier for nucleation along
grain edges (1D) is less than that for nucleation along grain boundaries or cracks (2D)
but larger than the energy barrier associated with nucleation at grain corners (0D).
However, both the energy barrier to nucleation and the availability of the respective
nucleation site in the reaction system dictate the rate of nucleation and how it changes
in the course of the discontinuous phase transformation.

1.1.4. Nucleation at dislocations

In addition to grain boundaries, grain edges or corners, dislocations in host crystals are
favourable sites for nucleation. However, their catalytic effect is fundamentally
different from that exerted by the surfaces of grain boundaries or edges because the
contact area between a dislocation and a cluster is too small to effectively reduce the
interfacial area of a cluster. Similar to DGV, the elastic strain energy of a dislocation
released during nucleation is negative and may counteract the elastic misfit strain
energy, DGE, reducing the energy barrier to nucleation. The common migration of
dislocations into sub-grain or small-angle grain boundaries indicates that nucleation at
dislocations may not only take place in isolated areas in the interior of reacting crystals
but that it may be a rather common type of nucleation, particularly during synkinematic
metamorphic discontinuous phase transformations.
Cahn (1957) developed a formalism to treat nucleation at dislocations for the case

that the interphase structure between cluster and reacting system is incoherent.
According to Cahn (1957), the Gibbs energy per unit length of a cylindrical cluster
forming on a dislocation considering an isotropic interfacial energy can be written as

DGDðrÞ ¼
pr2

!vv
DGV þ 2prs& A ln r ð23Þ

where the first term is the (negative) bulk contribution, r is the radial distance of the
cylinder surface from the dislocation line, and Alnr reflects the elastic strain energy
associated with the dislocation. For edge dislocations, A is given by

Aedge ¼
Sb2

4pð1& vÞ

and for screw dislocations

Ascrew ¼
Sb2

4p

where b is the length of the Burgers vector and v is Poisson’s ratio. Because v is ~0.3 for
many solids, the difference in DGD(r) between clusters at edge and screw dislocations
may be ignored.
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From equation 23 it follows that DGD(r) develops a minimum at

r0 ¼
!vvs

2DGV
ð1&

ffiffiffiffiffiffiffiffiffiffiffi
1& a
p

Þ ð24Þ

and a maximum at

r% ¼
!vvs

2DGV
ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
1& a
p

Þ ð25Þ

where a = 2ADGV/p!vvs2 < 1 (Fig. 7a). r0 corresponds to the radius of a metastable
cylindrical cluster and is smaller than r*, the radius of the critical cylindrical cluster
that forms along the dislocation line. Beyond r*, addition of molecules to the cluster
surface will reduce the Gibbs energy of the system. Note that expressions (24) and (25)
are based on the assumption that the length of the cluster corresponds to that of the
dislocation line. A more realistic relationship is derived by Cahn (1957) using
variational calculus methods in order to identify the cluster shape that reduces DGD(r)*
the most. The resulting values for DGD(r)* are normalized with respect to the energy
barrier to homogeneous nucleation, DGH(r)*, and plotted against a in Fig. 7b. As can
be seen, DGD(r)*/DGH(r)* decreases drastically as a approaches unity. For a > 1, the
bulk energy term and the energy associated with the strain field around the dislocation
balance the surface energy for all cluster sizes so that DGD(r) does not contain extrema
(Fig. 7a). In this case nucleation is effectively barrier-free and the discontinuous phase
transformation depends entirely on the energetics and kinetics of crystal growth.

1.2. Rate of nucleation

In CNT, expressions for the rate of nucleation link the thermodynamics associated with
the energy barrier to the kinetics of molecular attachment and detachment processes at
the cluster/matrix interface. CNT predicts that once DGV is negative, a finite number of
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clusters of various sizes is present, and that smaller ones are more abundant than larger
ones (e.g. Christian, 1975; Kelton, 2006). Clusters of n molecules, En, are assumed to
shrink or grow by loss or addition of a single molecule, E1, through a series of
bimolecular reactions

En&1 þ E1
kþ
n&1&! &
k&n

En

En&1 þ E1
kþn&! &

k&
nþ1

Enþ1

ð26Þ

where kn
+ is the rate with which a molecule is attached to the surface of a cluster of size n

and kn
& is the rate of detachment of molecules from En. Impingement of clusters are

assumed to be rare compared to the bimolecular reactions and are, therefore, not
considered.
Based on reaction rate theory (Turnbull and Fisher, 1949) molecular attachment and

detachment rates may be approximated by

kþn ¼ Ong exp &dgn
2kBT

8
:

9
;

k&nþ1 ¼ Ong exp þdgn
2kBT

8
:

9
;

ð27Þ

whereOn is a geometrical factor reflecting the number of molecules that can be attached
to the surface of a cluster composed of n molecules, dgn = DGn+1 & DGn and g is the
molecular jump rate into and out of the cluster surface

g ¼ 6D
l2

with the jump distance, l = !vv1/3, and D, the molecular mobility at the interface. For
spherical clusters, On & 4n2/3 (Kelton et al., 1983).
The cluster size frequency distribution Nn(t) for homogenous nucleation can be

derived by solving a modified system of Becker-Döring equations (Becker and Döring,
1935; Kelton, 1991)

dN1
dt ¼ &

Pv&1

n¼1
kþn Nn þ

Pv

n¼2
ðkþn þ k&n ÞNn &

Pvþ1

n¼3
k&n Nn

dNn
dt ¼ kþn&1Nn&1 & ðk&n þ kþn ÞNn þ k&nþ1Nnþ1 for 1 < n < v

ð28Þ

where v + 1 is the upper limit of the range of cluster sizes that is considered. The
numerical value of v depends on DG* and is chosen to represent a cluster size that is
bigger than the upper root of the DG(n) function (see Fig. 1). Following Kelton et al.

(1983), Nn5v(t) may be assumed to be zero to ensure that there is no backward flux of
molecules from stable clusters. N1(t) is assumed to be the number of particles with
single molecules which may decrease with time due to the formation of stable clusters,
in particular in condensed geological materials. The modified system of Becker-
Döring equations 28 accounts for the decrease in N1(t). It represents a numerically
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stiff set of ordinary differential equations with the initial conditions (Gaidies et al.,
2011)

Nnð0Þ ¼

N1ð0Þ
N2ð0Þ

..

.

Nvð0Þ

2

6664

3

7775 ¼

Neq exp &DGV
kBT

h i

0
..
.

0

2

6664

3

7775 ð29Þ

where Neq is the number of molecules predicted to form at given P-T-X conditions
during thermodynamic equilibrium. The nucleation rate can then be calculated as the
flux of clusters past the critical cluster size and is given by

I* = kn*
+Nn* & kn*+1

& Nn*+1 (30)

where Nn* is the number of critical clusters.
The form of the heterogeneous nucleation rate equation is identical to that for

homogenous nucleation (equations 28 to 30). However, for heterogeneous nucleation,
and assuming that nucleation barriers are similar irrespective of the type of nucleation
site, N1(t) does not correspond to the number of available monomers but reflects the
number density of nucleation sites instead. Because the number of nucleation sites
during heterogeneous nucleation is significantly smaller than the number of
unclustered molecules, heterogeneous nucleation rates may be relatively low
irrespective of the reduced energy barriers. In other words, the rate of heterogeneous
nucleation depends on the number of available nucleation sites and their respective
energy barriers and, hence, reflects the changes to the microstructure of the reacting
system, such as grain-size reductions or changes to the dislocation density, that may
evolve during crystallization. Considering that energy barriers in geological materials
reflect a range of nucleation sites, and, hence, vary across the reacting system, different
nucleation mechanisms may operate simultaneously at different locations in the system
with the fastest mechanism dominating the overall nucleation rate.
It is important to note that, in addition to changes in DG* and D, variations in the

nucleation site density during crystallization result in changes to the overall nucleation
rate. Therefore, a formalism similar to equation 28 may be best suited to numerically
model time-dependent cluster-formation rates during heterogeneous nucleation in
geological materials. This formalism also allows us to predict whether a steady-state
nucleation rate may be established during the evolution of the cluster-size distribution.
Given that N1 during homogenous nucleation in dilute systems is significantly larger

than the number of critical clusters that form during the phase transformation, a steady-
state nucleation rate may be approached in such a system. In this case, the steady-state
nucleation rate, IS, can be approximated by

IS ¼ On%g exp
&DG%

kBT

8
>:

9
>;N1Z

where Z is the dimensionless Zeldovich factor (Kelton, 2006)
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Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDG%j

3pkBTn%

s

which ranges commonly between 0.01 and 0.1. Z may be interpreted to correct for the
backward flux of molecules associated with the decay of stable clusters.
Steady-state nucleation in condensed systems, such as during solid-state phase

transformations associated with metamorphism, may be rather unlikely given the
relatively small number of available nucleation sites. In fact, the number of
energetically preferable nucleation sites may decrease significantly and approach the
amount of critical clusters as metamorphic crystallization proceeds resulting in a
reduction of the nucleation rate.

2. Coupled-flux analysis

Because CNT is an inherently interface-limited model, it cannot be applied to study
nucleation in partitioning systems in which long-range diffusion across the reacting
system is comparable to or slower than the molecular mobility at the cluster/matrix
interface. If the capillarity approximation of CNT holds and the bulk term of the Gibbs
energy of cluster formation can be separated from the interfacial term, the coupling of
the flux across the interface with long-range diffusion may be simulated. Originally
introduced by Russell (1968) and expanded by Kelton (2000), the coupled-flux
approach considers a transitional domain that separates the cluster from the matrix
(Fig. 8). At the domain/cluster interface a formalism similar to CNT is used where the
energy barrier to homogenous nucleation is linked to the rates of molecular attachment
and detachment processes. However, the bimolecular reaction rates applied in the
coupled-flux analysis also consider the number of molecules available in the
transitional domain, r, and the relative rates of the exchange of molecules between
domain and cluster and between domain and matrix.
The exchange rates between transitional domain and matrix may be written as

aðn; r& 1Þ ¼ xr
Dm

l2
rmn & rþ 1

r

8
>>:

9
>>;

1=2 N0

NS &N0

8
>:

9
>;

1=2

bðn; rÞ ¼ xr
Dm

l2
rmn & rþ 1

r

8
>>:

9
>>;
&1=2 N0

NS &N0

8
>:

9
>;
&1=2

ð31Þ

Cluster

Matrix

Transitional
domain Interface

attachment

Matrix/domain
exchange

Figure 8. Schematic illustration of the coupled-
flux model. After Russell (1968) and Kelton

(2000).
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where a(n,r & 1) is the rate with which a molecule diffuses into the domain around a
cluster of size n, and b(n,r) is the rate with which it diffuses out of that domain into the
matrix. Dm is the diffusion coefficient in the matrix, rn

m is the maximum number of
molecule sites available in the transitional domain surrounding a cluster of size n, and
N0 is the number of molecules distributed among NS sites in the matrix per unit volume.
x is a normalization constant. For a spherical cluster geometry, rn

m increases
approximately with cluster size as 4n2/3.
Similar to equation 27 but also accounting for the availability of molecules in the

domain surrounding the cluster, the attachment and detachment rates at the cluster/
domain interface can be approximated by

kþn;r ¼ rg exp &dgn
2kBT

8
:

9
;Gðn; rÞ

k&nþ1;r&1 ¼ rg exp þdgn
2kBT

8
:

9
; 1

Gðn;rÞ

ð32Þ

where the correction factor G(n,r) considers the changes in entropy in the transitional
domain and matrix caused by the attachment of a molecule to the cluster surface

Gðn; rÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anrmn !ðrmnþ1&rþ1Þ!
anþ1rmnþ1!rðrmnþ1&rÞ!

N0
NS&N0

8
:

9
;

r

For a fast exchange between matrix and domain relative to g, G(n,r) = 1 and r = rn
m.

In this case, equation 32 is identical to equation 27 of CNT, and the nucleation rate is
controlled by the rate of the interface processes.
Note that DGV is considered independent of the rates of interface processes and

matrix diffusion. For the calculation of DGV it is assumed that there are no chemical
potential gradients across the matrix so that the cluster composition for all sizes is fixed
and defined by the maximum Gibbs energy dissipation after some departure from
equilibrium. The coupled differential equations required to quantify the cluster size
frequency distribution Nn,r(t) can then be written as

dNn;r

dt
¼ In&1 & In þ Jr&1 & Jr ð33Þ

where

In&1 ¼ Nn&1;rþ1 &Nn;rk&n;r
In ¼ Nn;rkþn;r &Nnþ1;r&1k&nþ1;r&1

Jr&1 ¼ Nn;r&1an;r&1 &Nn;rbn;r
Jr ¼ Nn;ran;r &Nn;rþ1bn;rþ1

Solution of equation 33 for the case of slow matrix diffusion relative to the chemical
mobility at the cluster surface indicates that the transitional domains around subcritical
clusters become enriched during the discontinuous phase transformation while the
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domains surrounding supercritical clusters become deplete with respect to the number
of molecules available for cluster formation compared to the average matrix
composition. In addition, nucleation rates become smaller than calculated from
CNT, and the time required to establish a steady state during homogenous nucleation
increases as long-range diffusion becomes more important.
The spatial extent of the depletion zone around a supercritical cluster that develops

during diffusion-controlled nucleation cannot be predicted with the coupled-flux
model. However, the extent of depletion must reflect the matrix diffusivity and the
increase in volume of the growing cluster. The addition of molecules to the cluster may
reduce the chemical potential of the diffusing component in the vicinity of the cluster
depending on the G&x relationship of the matrix. If there are local sinks in the chemical
potential around the supercritical cluster, the chemical driving force for nucleation
available in the depletion zone would be lower than in the matrix, and the energy barrier
to nucleation in this zone may not be overcome. Nucleation in the depletion zone may
only be possible if there are reductions to the energy barrier to nucleation across this
zone. Possible scenarios that may explain nucleation within the depletion zone include
the drastic increase in DGV as a response to changes in P, T, X during crystallization, a
decrease in DGE, or a decrease of the interfacial area and an increase in the number of
nucleation sites caused by the reduction of grain size in the reacting system.

3. Nucleation in inhomogeneous systems

The separation of bulk and interface terms in the energetics of cluster formation is referred
to as capillarity approximation and limits the applicability of CNT to discontinuous phase
transformations close to equilibrium. In such a case, the reacting system and nucleating
phase may be considered homogenous separated by a sharp, thin interface. However,
nucleation at significant departure from equilibrium may result in critical sizes too small
for the capillarity approximation to be valid. In this case, the interface may be diffuse and
reactant and nucleus may be considered inhomogeneous instead. Non-classical gradient-
energy continuum approaches to nucleation allow prediction of the properties of a critical
cluster also at significant departure from equilibrium.

3.1. Gradient-energy continuum approach

If an initially homogeneous thermodynamically stable system is quenched into a two-
phase field through a rapid variation of pressure or temperature, it may become unstable or
metastable depending on its composition (Fig. 9a). In case the system is quenched into an
unstable state, it tends toward equilibrium through the process of spinodal decomposition.
TheG&x relationship of the unstable system is characterized by a curvature that is convex
towards higher values ofG so that q2G/qx2 < 0 and infinitesimal fluctuations in x reduceG
initiating the phase transformation (Fig. 9a). This type of phase transformation is referred
to as continuous and is not associated with any energy barrier other than those required for
chemical diffusion of components between the coexisting phases.
If the G&x relationship within the two-phase region is characterized by a curvature

that is concave towards higher values of G so that q2G/qx2 > 0 (Fig. 9a), the system

Nucleation in geological materials 363



experiences a metastable state and small fluctuations in x increase the Gibbs energy of
the system. The extent of metastability is limited by the chemical spinodal (q2G/qx2 = 0)
and binodal (xs and xequ

R , respectively, in Fig. 9). In order to re-establish equilibrium, large
fluctuations in x are required to decrease the Gibbs energy. These fluctuations may be
compared to critical clusters, and the energy barrier that has to be overcome for their
formation may be referred to as the energy barrier to nucleation characteristic for
discontinuous phase transformations. The energy barrier to nucleation is largest close to
equilibrium (x0

R? xequ
R in Fig. 9b) and decreases towards the spinodal (x0

R? xs in Fig. 9d).
The energy barrier to nucleation vanishes at the chemical spinodal.
The chemical driving force for nucleation in a system with double-well potential can

be obtained through the parallel tangent method (Dg in Fig. 9b&d). It is the maximum
difference in Gibbs energy between the critical cluster and the reacting system and
increases with departure from equilibrium (x0

R? xs). Whereas the properties of reacting
system and nucleus for phase transformations close to equilibrium do not vary
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Figure 9. Schematic molar G-x diagrams showing the chemical driving force for nucleation, Dg, for
different degrees of supersaturation. Nucleation takes place in the metastable region of the two-phase

field.
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significantly with x, so that the phases may be approximated as homogeneous,
relatively small variations in x influence significantly G of the reacting system and
nucleus as the departure from equilibrium increases (Fig. 9).
The influence of chemical heterogeneity on the energetics of nucleation can be

estimated using the gradient-energy approach of Cahn and Hilliard (1958)

G ¼
Z

v

gðxÞ þ kxðrxÞ2
h i

dV ð34Þ

where g(x) is the Gibbs energy of a homogeneous system at composition x, and kx is a
positive materials constant referred to as the compositional gradient energy coefficient.
kx corrects for the spatial chemical heterogeneity and is derived through a Taylor series
expansion of g in powers ofrxwhere the series is truncated after the quadratic term and
the linear terms neglected due to symmetry requirements. Because x describes a field in
an inhomogeneous system,G is a functional of the composition field integrated over the
volume of the system.
According to Cahn and Hilliard (1959), the energy barrier to nucleation in an

inhomogeneous system can be expressed as

DG% ¼
Z

V

DgðxÞ þ kxðrxÞ2
h i

dV ð35Þ

and, assuming a spherical nucleus geometry,

DG% ¼ 4p
Z1

0

DgðxÞ þ kx
dx
dr

8
>:

9
>;

2" #
r2dr ð36Þ

subject to the boundary conditions

dx
dr
! 0 as r! 0 and r!1

and

x ? x0
R as r ? ?

where x0
R is the composition of the reactant (Fig. 9). DG* is a saddle point of the G

functional and approaches the classical energy barrier to nucleation only for phase
transformations close to equilibrium. In this case, interface curvature and thickness are
minimized and the size of a critical cluster approaches infinity. However, with increasing
departure from equilibrium, the critical energy barrier determined through the Cahn-
Hilliard model decreases more than that of CNT and becomes zero at the chemical
spinodal. In contrast, CNT predicts that the energy barrier vanishes only for an infinitely
large degree of departure from equilibrium (e.g. equation 5). Another fundamental
difference between the predictions of CNT and the Cahn-Hilliard gradient energy approach
concerns the size of the critical cluster.Whereas CNT predicts an exceedingly small critical
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size far from equilibrium (e.g. equation 4), the non-classical gradient energy approach
predicts that the size of the critical fluctuation diverges at the spinodal after it experiences a
minimum at intermediate degrees of supersaturation (Fig. 10).
In the Cahn-Hilliard gradient energy model, the energy barrier to nucleation is a

function of the properties of the ‘‘hump’’ in theG&x function of the system (Fig. 9), and
the gradient energy term. The energy barrier increases and the interface thins and gets
sharper as the size of the ‘‘hump’’ increases. The gradient energy term increases the
thickness of the interface and smoothens the compositional gradient across it. In
contrast to CNT where interfaces are characterized by sharp structural differences
between the reacting system and nucleus, interfaces in the Cahn-Hilliard gradient-
energy model are defined as locations with significant compositional gradients. The
excess energy associated with these compositional gradients constitutes the interfacial
energy, and there are no structural differences between reacting system and nucleus.
If a phase transformation is isochemical and associated only with a transition in

structure then the Cahn-Hilliard approach cannot be used to quantify the energy barrier
to nucleation and the size of a nucleus. Instead, the Allen-Cahn approach (Allen and
Cahn, 1979) may be applied which allows us to model continuous order-disorder phase
transformations. The Gibbs energy may then be written

G ¼
Z

V

gðZÞ þ kZðrZÞ2
h i

dV ð37Þ

where g(n) is the Gibbs energy of the homogeneous system, Z is a long-range order
parameter and kZ is the gradient energy coefficient for that order parameter.
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Figure 10. Schematic relationship between the

size of a critical cluster and the departure from
equilibrium according to the classical nuclea-

tion theory (CNT) and the Cahn-Hilliard
gradient energy approach (C-H). Modified after

Cahn and Hilliard (1959).
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Poduri and Chen (1996) developed a model that describes phase transformations
involving both compositional and structural changes combining the Cahn-Hilliard and
Allen-Cahn approaches. According to Poduri and Chen (1996), the increase in Gibbs
energy arising from the formation of a spherical nucleus is given by

DG% ¼ 4p
Z

DgðZ; xÞ þ kZ
dZ
dr

8
>:

9
>;

2
þkx

dx
dr

8
>:

9
>;

2" #
r2dr ð38Þ

Similar to the Cahn-Hilliard approach, the non-classical critical cluster size
determined by Poduri and Chen (1996) diverges at the spinodal. However, according
to Binder (1991), the divergence of the critical size is an artefact of the gradient energy
approach if thermal fluctuations are ignored. It has been suggested (Poduri and Chen,
1996) that the incorporation of a thermal noise term in the calculation of the nucleation
energetics, as initially proposed by Cook (1970), does result in finite critical sizes also
for nucleation close to the spinodal.
The Cahn-Hilliard gradient energy approach is similar to a model initially

developed by van der Waals (1893). More advanced models of nucleation derived
by Oxtoby and Evans (1988), Bagdassarian and Oxtoby (1994) and Granasy et al.

(2002) are based on the pioneering work of van der Waals and Cahn-Hilliard and are
similar in that the gradient energy terms act as a penalty for sharp compositional or
structural gradients allowing for the modelling of interfacial tension between reacting
system and nucleus. The treatment of Bagdassarian and Oxtoby (1994), however,
predicts a decrease in both, DG* and r* with departure from equilibrium, with DG*
vanishing and r* taking on a finite size at the spinodal. In the work by Bagdassarian and
Oxtoby (1994), a thermal noise term, as suggested by Binder (1991), was not required
to predict more realistic nucleus sizes at the spinodal. Instead, the homogeneous Gibbs
energy functional was modelled with two parabolas, each centred with their minimum
on the reacting and nucleating phase, respectively, and intersecting at a Gibbs energy
related to the driving force for nucleation (Bagdassarian and Oxtoby, 1994).
According to this work, r* increases away from the spinodal and is identical to the
classical critical radius close to equilibrium if the curvatures of the two parabolas are
the same. In case the Gibbs energy curvature of the parabola about the nucleus is
greater than that about the reacting system, the predicted critical size close to
equilibrium is greater than the classical one. The Bagdassarian and Oxtoby (1994)
model of intersecting Gibbs energy parabolas may be a valuable approach to study the
energetics of nucleation in geological materials if the curvatures of the parabolas are
fit to the realistic Gibbs energy profiles of the geological phases. The phase field
method may then be used to predict the dynamics of nucleation and microstructure
evolution.

3.2. Nucleation simulations with the phase field method

The gradient energy approach allows us to model the microstructural evolution of a
system during a discontinuous phase transformation if linked to rate expressions for
nucleation and growth. Such evolution models constitute the phase field method (e.g.
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Chen, 2002) which requires the description of the Gibbs energy density as a function of
field variables, commonly referred to as order parameters, such as system composition
and structure. The two most common approaches to the dynamics of nucleation in a
phase field model are the introduction of a random noise term to simulate thermal
fluctuations (e.g.Wang et al., 1995), and the explicit nucleation method (e.g. Simmons
et al., 2000). In any case, the phase field method is a computational tool applied to the
study of the dynamics of nucleation where the microstructure evolution of the model
system is driven by an overall reduction of Gibbs energy. Because it considers the
influence of spatial variations in order parameters on the Gibbs energy of the system,
the phase field method allows us to study potential interactions between neighbouring
nuclei such as the competition for nutrients during diffusion-controlled cluster
formation or the coalescence of nuclei. It is important to note that the capillarity
approximation and the interface-controlled kinetics inherent in CNT do not allow for a
similar treatment limiting it to a 0-dimensional theory.
The random noise phase field method (e.g.Wang et al., 1995) adds Langevin random

fluctuation terms (Landau and Lifshitz, 1969) both to the stochastic Cahn-Hilliard time
evolution equation (Cahn and Hilliard, 1958) and to the Allen-Cahn time evolution
equation (Allen and Cahn, 1979) so that

@x
@t
¼M

@2gðZ; xÞ
@x2

r2 & 2kxr4x
" #

þ x

and

@Z
@t
¼ &L @gðZ;xÞ

@Z
& 2kZr2Z

" #
þ x

where t is time, M and L are the positive kinetic coefficients related to the diffusional
mobility and the microscopic rearrangement kinetics, respectively, and x is the
Langevin noise term satisfying the fluctuation-dissipation theorem (Landau and
Lifshitz, 1969). g(Z,x) is usually approximated by a Landau expansion polynomial

gðZ; xÞ ¼ A1

2
ðx& x1Þ2 þ

A2

2
ðx& x2ÞðZ2

1 þ Z2
2Þ &

A3

4
ðZ4

1 þ Z4
2Þ þ

A4

6
ðZ2

1 þ Z2
2Þ

3

where x1, x2, Ai (i = 1,...4) are positive constants and Z1 and Z2 are the long-range order
parameters. x1 and x2 are close to the equilibrium compositions of the reactant and
nucleus, and the Ai values define the shape of the Gibbs energy surface.
The random noise phase field method has been shown to allow appropriately for the

simulation of homogeneous (Wang et al., 1995) and heterogeneous (Castro, 2003)
nucleation if the energy barrier to nucleation is relatively small. However, unphysically
large random noise is required to simulate discontinuous phase transformations in
systems with significant energy barriers to nucleation which results in unrealistic
nucleation-rate predictions. In addition, the high spatial and temporal resolution of the
simulations required by the Langevin noise terms is computationally prohibitive unless
they are applied to very small model systems.
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The explicit nucleation model (e.g. Simmons et al., 2000; Jokisaari et al., 2016) may
be considered a valuable alternative to the random noise phase field method as it is
computationally less expensive. It allows us to link the time evolution equations of the
phase field method with the nucleation energetics and nucleus sizes derived either
through CNT (e.g. Simmons et al., 2000) or the gradient-energy approach (e.g. Heo et

al., 2010). The Langevin noise terms are not included in the explicit nucleation method.
Instead, the nuclei are introduced explicitly to the system assuming that the time
required for their formation is significantly shorter than the temporal resolution of the
nucleation simulation, Dt. At random locations, r, nucleation probabilities, P, are
calculated through

P(r,t) = 1 & exp(&I*Dt)
and compared to a uniform random number, R, which ranges between 0 and 1. In case P >
R, a nucleus is placed at the respective location, and the local composition field is depleted
accordingly to account for the conservation of the overall composition if the phase
transformation is partitioning.
The time evolution equations of the phase field method are coupled partial

differential equations that can be solved numerically in various ways, including finite
differences and spectral methods, and the finite element method. These numerical
approaches allow the simulation of nucleation even in complex geometries, such as
those associated with dendrite formation (e.g. Granasy et al., 2004a,b), and have been
successfully used to study nucleation in multiphase systems (e.g. Steinbach et al., 1996;
Nishida et al., 2014). The additional consideration of growth kinetics (see Gaidies et al.
2017, this volume) allows the analysis of the complete microstructure evolution of the
system associated with the discontinuous phase transformation.

4. Summary and potential future research

Nucleation is a fundamental process during most phase transformations in geological
materials. CNT may be used to characterize the energetics of the critical barrier and the
rate of nucleation for reactions close to equilibrium provided that long-range diffusion
is fast relative to attachment and detachment processes at the interface between nucleus
and metastable reactant. Non-classical gradient energy approaches to nucleation, such
as the Bagdassarian and Oxtoby (1994) model, may be valuable alternatives to CNT as
they allow the consideration of the influence of chemical heterogeneities on nucleation
kinetics. Such heterogeneities may form in the metastable matrix in the vicinity of a
nucleus during diffusion-controlled nucleation, or across the nucleus/matrix interface
during nucleation far from equilibrium where the nucleus is assumed to be so small that
interface properties are rather diffuse. The most promising approach to study the spatial
distribution and evolution of nuclei in multiphase systems, such as most geological
materials, may be the phase field method. Application of this method to appropriate
systems may result in a better understanding of nucleation in geological materials and
its influence on micro-structure and rock-texture formation.
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